You're about to create your best presentation ever

Mathematical Models Presentation Template

Create your presentation by reusing one of our great community templates.

Mathematical Models

Transcript: joules (J) but not represented as a collective unit (only done) when energy transfers to an object and the body changes in the position/motion in the SAME direction of the applied force Formula Formula Power Formula *the useful work output is never equivalent or exceeding the work input power = work/time (P = W/t) Gravitational Potential Energy Equation output force = 140 N input force = 140 N mass = 9 kg height = 15 m g = 9.8 m/s² PE = 9 kg x 15 m x 9/8 m/s² PE = 1323 J the ratio of useful work output to total work input Kinetic Energy the number that describes how much force or distance is multiplied by a machine; the ratio between the output and input force efficiency = useful work output/work input work = force x distance W = F x d Mathematical Models energy an object possesses because of its position in a gravitational field Measurement grav. PE = mass x free-fall acceleration x height PE = mgh Measurement usually expressed as a percentage (%) by multiplying the useful work output/work input by 100 Mechanical Advantage *free-fall acceleration (g) = 9.8 m/s² work, W = 800 J time, t = 40 s has no SI unit any machine with a mechanical advantage greater one multiplies a force (locate quanities measured in joules in a problem) Measurement Measurement Efficiency kinetic energy = 1/2 x mass x speed squared KE = 1/2mv² Work Formula *mechanical advantage is leverage Measurement Mechanical Advantage Equation *a rope looped through a pulley attached to a fixed spot and attached to the weight a single fixed pulley a mechanical advantage of 1, meaning no mechanical advantage (or disadvantage) however advantageous the change in direction may be. power = work/time P = W/t Formula mechanical advantage = output force/input force ignoring friction, mechanical advantage is also equivalent to input distance/output distance Formula watts (W) is not italicized, as work (W) is Measurement the energy of a moving object due to the motion, depending on mass and speed Work Equation Gravitational Potential Energy joules (newtons [force] times meters [distance]) joules (J) are also equal to 1 kg x m²/s² P = 800 J/40 s P = 20 W mechanical advantage (MA) = 140 N/140 N mechanical advantage = 1 Power Equation ex. KE = 1/2(44 kg)(31 m/s)² = 2.1 x 10⁴ kg x m²/s² simplified to where 2.1 x 10⁴ J is the answer watts [joules per second] joules (J) because it is relative to the work equation, as the it is a calculation of force times distance Works Cited force, F = 25 N distance, d = 14 m work = force x distance (W = Fd) W = 25 N x 14 m Work = 350 J 1 N x m = 1 J = 1 kg x m²/s² the rate at which work is done or energy is transformed in a given amount of time

Mathematical Models

Transcript: Cellphone Comparison Postpaid and Prepaid Specifications and Formulation of Equations Postpaid Plan: Price of iPhone 5: P 2,000 Calls per Minute: P 7.50 Calls per Month (Minutes): 210 2nd Equation: y = 1575x + 2,000 210 + 7.50 ----------- P 1575 A new model of iPhone just got out and you want to have one. You have two options, buying the phone with full payment on a retail store and get a fixed prepaid plan, or buying it bundled with a plan locked for 2 years from Smart. You need to determine if you will save money from buying the phone from a retail store or buying it from Smart. Reflections: Intersection Point: (70,000,180) Conclusion: The Postpaid and Prepaid Lines will intersect at P70,000 at 180 days or 6 months. So, we have concluded that the best plan for our new phone is the Postpaid Plan because we would save more if we take that plan. Also, we will save more with this plan. GRAPHING: Is there anything you would have done differently? A: No, because we all have agreed on the same product. Why was the use of a system of linear equations necessary for this problem? A: To make it easier for us to determine which type of cellphone cost more. EQUATIONS: 1. y = 975x + 32,000 -----> 1575x - y = 2,000 2. y = 1575x + 2,000 -----> 975x - y = 32,000 600x = 30,000 x = 50 975x - y = 32,000 975(50) - y = 32,000 x = 50 48,750 - y = 32,000 y = 16,800 -y = 31,950 - 48,750 - y = -16,800 y = 16,800 What other costs will come into play if you were really planning to buy that item? A:The taxes for the text and the calls. Also the SIM card that you are going to use. Patrick Fernandez Emmanuele Murillo Jose Angelo Sibug Marcus Cortes Situation: Prepaid Plan: Retail Price of iPhone 5: P 32,000 Calls per Minute: P 7.50 Calls per Month (Minutes): 130 1st Equation: y = 975x + 32,000 130 + 7.50 ----------- P 975 (0,2,000) Members: Mathematical Models (1, 32,975) (0, 32,000) (1, 1575) What factors would influence your decision? A: The amount of the cellphone mostly and how much do we need to pay for taxes. What is your favorite thing about your presentation? A: Making this in Prezi format.

Mathematical Models

Transcript: A graphical model uses a graph to show how two variables are related where something is compared to where it started, includes direction pulls everything toward earth 2.1 Using a Scientific Model to Predict Speed How much fuel should the train carry? Allows us to predict values that were not measured by the experiment. Distance The smaller questions can be answered by experiments and/or research The slope of the graph is the acceleration Free Fall Shows where things are at different times Why Make Models? Smaller Question ANY CHANGE IN SPEED OR DIRECTION IS AN ACCELERATION! How powerful does the train's motor need to be to go up hills? (Uses numbers) The independent variable is changed by the experimenter (you) Position The independent variable is on the x-axis zero acceleration means speed is constant Determining Speed From the Slope of a Graph This is a better picture of what happend than overall speed These questions can be answered by simple experiments or research to see what others have done A model can be created from the results of an experiment. Acceleration is the rate at which speed changes It is important to have ACCURATE and PRECISE measurements in experiments to make good (ACCURATE = CORRECT) models. 2.2 Position and Time interval of length without regard to direction experiment Creating a model of the results of an experiment allows us to predict non-tested data points. Smaller Question The dependent variable is on the y-axis Speed does not stay constant. (visualization) Reading a Graph Position vs. Time graph shows both! Strong Relationships are shown by a pattern in the data points Mental Model Ch 2 Mathematical Models Big Complex Questions can be broken down into smaller questions research How does changing one variable effect another? Instantaneous Speed and Average Speed negative acceleration Going downhill, you accelerate - your speed increases! Physical Model Gravity Acceleration and the Speed vs. Time Graph Different examples of Acceleration Mathematical Model Inverse Relationship is when one variable increases while the other variable decreases Graphs show this better than data tables Making a Graphical Model experiment More accurate data provides more accurate models. If distance is on the y-axis and time is on the x-axis the slope of the line equals the speed. Average speed is the total distance divided by the total time. The dependent variable depends on the other variable No Relationship is shown by random scattering of data points Putting together models of smaller questions allows us to solve the bigger questions. Conceptual Model Acceleration in Metric Units How good do the train's breaks need to be go down hills? straight down acceleration due to ONLY gravity 2.3 Acceleration Experiments tell us the relationship between variables Big Complex Question (graphs, scale models) Direct Relationship is when one variable increases while the other variable increases Acceleration when speed is in miles per hour 1. Find value on x-axis 2. Draw line vertically up to the data curve 3. Draw line horizontally to the y-axis 4. Use the y-axis scale to predict the other variable's value deceleration Instantaneous Speed is the speed at a specific moment. Smaller Question graph of speed vs. time shows acceleration BCQ: How can I design a high speed train that can cross the United States? The car's speed is increasing every second. Four Kinds of Models Scientific Models (description) Cause and Effect Relationships A model shows how the variables of an experiment affect the results. If a car goes from 20mph to 60 mph in 4 seconds, the change is 10 mph per second. The Position vs. Time Graph downhill is acceleration due to gravity 2 the unit for acceleration is cm/sec

Mathematical Models

Transcript: Gr. 11 College Bound Math Mathematical Models Standard Form QUADRATICS Vertex Form Factored Form Changing to This Form factored form y= 2(x+10)(x+2) standard form 2 y=2x + 24x +40 VERTEX FORM 2 y=2(x+ 6) - 32 How can we graph using standard form? Standard form is limited into identifying key features from the equation. Graphing Sub in x values and calculate corresponding y TO FIND POINTS TO GRAPH plot points and connect the dots! Example Graph Notebook pick x values to sub in (usually pick from -2 to 2 to get range of negatives and positives as well as 0! Let x =0 , y= 2(0)^2 - 5(0) +3 y= 0 + 0 + 3 y= 3 let x=1, ..... found x-intercept when subbed in 1, y ended up being 0 found y-intercept by subbing in 0 Key Features KEY FEATURES : y-intercept ideal is to find when y-values equal 0 (your zeros) play with x values y-intercept is when x=0. 2 y= a(0) + b(0) + c y= 0 + 0 + c y= c (0,c) the c , or constant value, at the end of the equation is the y-int. try to find 2 symmetrical points in the table ideal is to find your y-values change direction (from low values to high then back to low again) why? The vertex is found when the direction changes! Key Features KEY FEATURES : y-intercept ideal is to find when y-values equal 0 (your zeros) play with x values y-intercept is when x=0. 2 y= a(0) + b(0) + c y= 0 + 0 + c y= c (0,c) the c , or constant value, at the end of the equation is the y-int. try to find 2 symmetrical points in the table ideal is to find your y-values change direction (from low values to high then back to low again) why? The vertex is found when the direction changes! Changing to This Form y= 2(x+10)(x+2) factored form a=2 and x-intercepts are x= -10 and x= -2 h = -10 + (-2) / 2 h= -12/ 2 h= -6 VERTEX FORM let x= -6 in the equation and solve for y y= 2(-6 + 10)(-6 + 2) y= 2(4)(-4) y= 32 2 standard form y=2(x+ 6) - 32 2 2 y=2x + 24x +40 y=2(x+ 6) - 32 need to change to factored first then vertex form there is a way! it is called completing the square (different course material) TRICK: h= -b/2a sub in h for k TO FIND POINTS It is called vertex form because the vertex is in the equation! (h,k) is the vertex. TO GRAPH How can we graph using vertex form? Vertex form shows the transformations done to y=x^2. You can also use the step pattern to find points! Graphing Plot the vertex the and use the steps 1a,3a,5a,.. transform y=x by using the 5 key points and move them depending on a,h,k remember symmetry! Example ex. 1. Graph Notebook ex. 2 (x,y) (x-6, -4y-8) vertex: (h,k) so (-6,-8) transformations: reflection: yes, a is neg. vertical stretch: a=-4 so stretch by factor of 4 hor. translation: left 6 ver. tranlsation: down 8 move all x values left 6, multiply each y value by 4, make it negative, then down 8 Key Features KEY FEATURES : VERTEX Step Pattern: points move from vertex in a pattern over 1, up 1, over 1, up 3, over 1, up 5 if a value, then stretches/compresses each step to 1a,3a,5a,... h value is opposite sign you see! 2 (h,k) Direction of Opening if a>0 then opens up if a<0 then opens down can find the y-intercept by subbing in x=0 and solving for y in eqn: y=a(x-h) + k so always has a minus h 2 VERTEX FORM y=2(x+ 6) - 32 2 Changing to This Form a=2 find the zeros (y=0) 0=2(x+ 6) - 32 32=2(x+6) factored form 32/2=(x+6) standard form y= 2(x+10)(x+2) y=2x + 24x +40 2 2 sq root (16) =x+6 x= -6 + 4 or x=-6-4 x=-2 and x=-10 so factors are x+2 and x+10 divide each term by 2 to factor it out! 1. common factor 2. factor the trinomial __ + __ = 12 __ x __ = 20 y= 2(x+10)(x+2) y=2(x + 12x +20) y=2(x+10)(x+2) 20 1 20 2 10 3 4 5 How can we graph from factored form The easiest form to plot from is factored form. Graphing TO FIND POINTS find your zeros and plot them find the middle and plot the AOS and then calcuate the vertex to plot sub in 0 to find y-int then can use symmetry to find last point TO GRAPH Example Notebook Graph y= (x-4)(x+10) The solutions for when y=0 (x-intercepts) are x=4 and x=-10 Key Features KEY FEATURES : ZEROS y-interept can be calculated by subbing in x=0 and solving! factored form is multiplying terms together. Anything times 0 is 0 therefore if one bracket equals 0, then y=0 and makes it an x-intercept! (0,s) and (0,t) when y=a(x-s)(x-t) the AOS is found in the middle of 2 symmetrical points and the zeros are 2 points we can use to find it! h is the AOS value. sub in x=h into equation and solve for y =k, vertex at (h,k) h= s + t / 2 What are They? EXPONENTS equations where the exponent is the number changing! The Rules Exponent Rules The Graphs y=ab x The 3 forms -connected! Growth and Decay Title plot the points from the table and connect the dots! TABLE GRAPH EQUATION The variable is in the exponent spot! plug in x values (a few positive and a few negative ) and calculate the corresponding y values Title decay example The Equations Population Example Double Time Half-Life

Mathematical models

Transcript: Low level of drug allows duplication and growth The relationship High levels increase chances of virus mutation Easier to develop new combination of drugs. Cheaper and better drugs Prescription periods are VERY important Results Application LISTEN TO THE DOCTOR! by Bang P Wide range of data ensures higher accuracy than other lab results Following prescriptions perfectly does not ensure viruses won't develop resistance (other natural factors in body) Here are some extra assets : Inverse relationship? Mutation strains of HIV virus. Drug concentration throughout body Saves money and time conducting lab experiments, removes trial-and-error process Provide accurate measurements of HIV virus' ability to develop resistance Why use model? Led by Martin Nowak, Professor of Mathematics and of Biology and Director of the Evolutionary Dynamics Program. Virus resistance model Harvard's research Commitment to doctor's prescription vs Virus' ability to develop resistance Future improvements Mathematical model to reduce chances of virus developing resistance No symptoms does not mean no viruses How model was made Output: Chances of virus developing resistance Input: Patients' characteristics Adherence level (0-100%) Drugs present in compound Concentrations of drugs present Model's precision depend on amount of data collected. Johns Hopkins University Medical School was studying HIV virus' reaction to drug doses and provided good amount of sample Output: Simulated patients Virus' growth/decay rate Chances of virus developing resistance add logo here

Now you can make any subject more engaging and memorable