Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

APLICACIONES DE CONJUNTOS EN LA COMPUTACION

No description
by

Liliana Cazares

on 12 October 2014

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of APLICACIONES DE CONJUNTOS EN LA COMPUTACION

APLICACIONES DE CONJUNTOS EN LA COMPUTACIÓN
En Computación Distribuida existen también problemas de conjuntos. Uno de ellos es el problema de los conjuntos imposibles de relojes vectoriales ([9]), que no se ha determinado si posee un algoritmo eficiente que lo resuelva.
TEORIA DE CONJUNTOS EN COMPUTACIÓN

En Ciencias de la Computación, la Teoría de Conjuntos también juega un papel preponderante en la Matemática Discreta, Teoría de Computabilidad, Algoritmos, Programación y Especificación Formal de Software.
En Computación Distribuida existen también problemas interesantes de conjuntos. Tal es el caso de los Conjuntos Imposibles de Relojes Vectoriales.
En Computación Distribuida, cualquier ejecución produce una historia distribuida de eventos. Si se coleccionan las etiquetas vectoriales de esos eventos, se obtiene un conjunto de vectores de enteros, al que se le denominará conjunto posible. Sin embargo, no cualquier conjunto de vectores de enteros es el producto de los eventos de una historia distribuida. A estos conjuntos se les llama imposibles.
PROBLEMA DE CONJUNTOS
LA LÓGICA COMPUTACIONAL ES LA MISMA LÓGICA MATEMÁTICA

La lógica computacional es la misma lógica matemática aplicada al contexto de las ciencias de la computación. Su uso es fundamental a varios niveles: en los circuitos computacionales, en la programación lógica y en el análisis y optimización (de recursos temporales y espaciales) de algoritmos

Está constituido por circuitos electrónicos que responden a diferentes señales eléctricas, siguiendo los patrones de la lógica booleana; esto es, compuertas lógicas que devuelven un valor dependiendo de las entradas que se le dan al sistema.

EL NIVEL MENOS ABSTRACTO DENTRO DE UNA COMPUTADORA

 Existen ocho compuertas lógicas básicas con las cuales se pueden formar sistemas muy complejos: AND, OR, Inverter, Buffer, NAND, NOR, XOR y XNOR. Todas ellas son representadas mediante un símbolo y una tabla de valores de verdad, que es simplemente un cuadro donde se ubican todas las posibles entradas y los valores que devolvería la compuerta dados dichos valores. 

Todo sistema computacional, por muy complejo que sea, no está compuesto por más que circuitos electrónicos que únicamente entienden un lenguaje binario. La lógica computacional se encarga de modelar y optimizar tales sistemas a este nivel.

IMPORTANCIA DE CONJUNTOS DENTRO DE LA COMPUTACIÓN

Se clasifica en no usar los mismos caracteres en la misma estructura, como comúnmente llamamos programación primitiva, de manera general las clasificaciones lo aplicamos en bases de datos como las estructuras senténciales de realizar una cosa u otra para ello podemos aplicar la teoría de conjuntos sin repetir los mismos procedimientos y abreviarlo con este elemento.
Está altamente relacionada con teoría de grafos y lógica. Dentro de la teoría de la informática se encuentra la teoría de algoritmos para problemas matemáticos. La computabilidad estudia lo que puede ser computado y tiene lazos fuertes con la lógica, mientras que la complejidad estudia el tiempo que se demora en hacer computaciones.

La teoría de autómatas y los lenguajes formales se relacionan de manera cercana con la computabilidad. Las redes de Petri y álgebra de procesos se usan para modelar sistemas computacionales, y métodos de la matemática discreta se usan para analizar circuitos VLSI. La geometría computacional aplica algoritmos a problemas geométricos, mientras que el análisis digital de imágenes los aplica a representaciones de imágenes. La teoría informática también incluye el estudio de tópicos de informática continua.
LA TEORÍA DE LA INFORMÁTICA INCLUYE ÁREAS DE LA MATEMÁTICA DISCRETA RELEVANTE A LA COMPUTACIÓN

Liliana Cazares Fraga
Matemáticas Discretas
Matricula 14010274
Semestre 1
Grupo A
Full transcript