Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Untitled Prezi

No description
by

Djordje Mitrovic

on 24 March 2013

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Untitled Prezi

Po definiciji Euklidske planimetrije: π je odnos obima i prečnika kruga
(π=O/2r) π je površina kruga poluprečnika 1!
( P=r²π, r=1 ⇒, P=π ) Po analitičkoj definiciji :
π je najmanje pozitivno x za koje je sin(x)=0 odnosno
dva puta najmanje pozitivno x za koje je cos(x)=0 O=2rπ Ojlerov identitet Kvadratura Kruga Viète Beskonačni razlomak Bufonova Igla Hipiasova Kvadratisa 03/14/2013 KAKO JE TO TEKLO KROZ
ISTORIJU ? * π JE IRACIONALAN-IMA BESKONAČAN NEPERIODIČAN DECIMALNI ZAPIS
( 3.14159265358979323846...)


* π JE TRANSCEDENTAN-NE MOŽE SE DOBITI REŠAVANJEM ALGEBARSKE JEDNAČINE SA CELOBROJNIM KOEFICIJENTIMA OSOBINE BROJA π Arhimedov algoritam 2 3 x duzina L rastojanje izmedju paralela - S S>L n - broj bacanja x - broj pogodaka 2nL/xS M n=1000
L=3
x=197
s=10 Izvolite na najsladji deo prezentacije ! :) 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 Angio Javni čas iz matematike Svetski dan broja π
(proslava i još po nešto) Profesor: Nataša Pešić Učesnici - Saradnici : Jelena Todorović Anđela Donević Đorđe Mitrović Ognjen Plavšić
Full transcript