### Present Remotely

Send the link below via email or IM

• Invited audience members will follow you as you navigate and present
• People invited to a presentation do not need a Prezi account
• This link expires 10 minutes after you close the presentation

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

You can change this under Settings & Account at any time.

# FORCES ACTING ON STRUCTURES

No description
by

## Kevin Wang

on 10 June 2014

Report abuse

#### Transcript of FORCES ACTING ON STRUCTURES

FORCES ACTING ON STRUCTURES
A force is any push or pull that causes a structure to undergo a change. You describe forces in magnitude, direction and point and plane of application. Magnitude is the strength of the force. Direction is where the force is coming from and point and plane of application is where the force hits the object. Forces can be divided into two main categories. Internal forces, which happen inside a structure, and external forces, which occur on the exterior.
Internal Forces
Internal forces are forces that occur inside a structure. It happens when one part of the structure acts on another part. Examples of internal forces are tension, torsion, compression and shear. Each of these forces are able to damage structures if they are not built properly.
What are forces?
Tension
Tension is an internal force, caused by stretching of an object. It is usually caused by a pulling force at the ends of a structure, such as a bridge or a wire. When a structure experiences tension, it lengthens and gains potential energy. Should the structure be slackened, it will snap back to its relaxed length. If a structure is stretched too far and experiences too much tension, it could detach and break apart.
An example of how tension plays a role in our everyday life is when hydro workers set up electrical lines. When they set up the lines, they make sure to let them drape down and relax. This is so in the winter time, when the cold temperatures cause the wire to contract, the wire won't snap from tension. If the electrical lines were originally set up with little or no slack, the wire would experience too much tension as it contracts and it would snap, causing a power outage for many homes.
Torsion
Torsion is an internal force that results in the twisting of a structure. It is caused by a rotating motion at both ends of a structure, with one end rotating one way while the other end rotates either in a different direction or with different speed. Just like tension, structures gain potential energy when they are twisted and have a tendency to spring back to its original, relaxed form after being released. A structure experiencing too much torsion could snap and break apart.
We can find examples of torsion everywhere we look. Many designs on everyday objects have a spiral pattern on it. The spiral pattern is achieved by heating the object until it is soft, and then twisting it, which causes torsion. Also, in many sports, athletes will encounter torsion in their own body, such as in figure skating.
If structures are not properly built to withstand torsion, they can easily fail, due to factors like wind. In 1940, the Tacoma Bridge collapsed due to the strong winds, causing the bridge to twist and finally break.

Compression
When a structure experiences compression, it is being compressed, or squeezed together. Unlike tension, where both ends of the structure is being pulled outward, compression involves both ends of the structure being pushed inward. Compression can be uni axial, where compression occurs in only one direction, shortening the length, or bi axial, where the structure experiences compression on all sides, decreasing its volume.
If a structure is compressed too far, it may give away and fail.
Compression is a part of our everyday life. You compress a lemon to get the juice out. Oxygen is compressed and stored at high pressure inside an oxygen tank. Even as you read this, you are being compressed by the atmosphere at roughly 15 pounds per square inch!
Shear
When a structure experiences shear, it means that one part of the structure is being pushed one way, while the other part is pushed in the opposite direction. Shear can be a caused by natural factors such as the wind or earthquakes, or by human factors, such as when you spread butter on your bread.
Buildings have to be designed to be able to resist shear, otherwise they would quickly collapse. When wind blows on a house or a tall skyscraper, the wind causes the one part of the building to move one way, while the foundation of the building holds it in place. This causes a shearing force because the two parts of the building are being pulled in opposite directions. As a result, the International Building Code states that all buildings must be braced by with shear walls, which are designed to withstand shear are help protect the building.
External Forces
External forces are forces that occur on the outside of a structure. Examples of external forces would be gravity, load, and symmetry. Just like internal forces, external forces are able to cause devastating damage to structures.