Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

PMMA Case Study

Overview of properties and manufacturing process of PMMA (Perspex).
by

Vince Bruce

on 20 January 2010

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of PMMA Case Study

Manufacture PMMA is formed by reacting a monomer, such as methyl methacrylate, with a catalyst. typically an organic peroxide. The catalyst initiates and sustains the reaction, but does not become part of the resulting polymer.

Acrylic plastics are available in three forms: flat sheets, elongated shapes (rods and tubes), and molding powder. Molding powders are sometimes made by a process known as suspension polymerization in which the reaction takes place between tiny droplets of the monomer suspended in a solution of water and catalyst. This results in grains of polymer with tightly controlled molecular weight suitable for molding or extrusion.

Acrylic plastic sheets are formed by a process known as bulk polymerization. In this process, the monomer and catalyst are poured into a mold where the reaction takes place. Two methods of bulk polymerization may be used: batch cell or continuous. Batch cell is the most common because it is simple and is easily adapted for making acrylic sheets in thicknesses from 0.06 to 6.0 inches (0.16-15 cm) and widths from 3 feet (0.9 m) up to several hundred feet. The batch cell method may also be used to form rods and tubes. The continuous method is quicker and involves less labor. It is used to make sheets of thinner thicknesses and smaller widths than those produced by the batch cell method.

We will describe both the batch cell and continuous bulk polymerization processes typically used to produce transparent PMMA sheets.
Processing PMMA Case Study Properties Environmental Factors Batch cell bulk polymerization

The mold for producing sheets is assembled from two plates of polished glass separated by a flexible "window-frame" spacer. The spacer sits along the outer perimeter of the surface of the glass plates and forms a sealed cavity between the plates. The fact that the spacer is flexible allows the mold cavity to shrink during the polymerization process to compensate for the volume contraction of the material as the reaction goes from individual molecules to linked polymers.

An open comer of each mold cavity is filled with a pre-measured liquid syrup of methyl methacrylate monomer and catalyst. In some cases, a methyl methacrylate prepolymer is also added. A prepolymer is a material with partially formed polymer chains used to further help the polymerization process. The liquid syrup flows throughout the mold cavity to fill it. The mold is then sealed and heat may be applied to help the catalyst start the reaction.

As the reaction proceeds, it may generate significant heat by itself. This heat is fanned off in air ovens or by placing the molds in a water bath. A programmed temperature cycle is followed to ensure proper cure time without additional vaporization of the monomer solution. This also prevents bubbles from forming. Thinner sheets may cure in 10 to 12 hours, but thicker sheets may require several days.

When the plastic is cured, the molds are cooled and opened. The glass or metal plates are cleaned and reassembled for the next batch. The plastic sheets are either used as is or are annealed by heating them to 284-302°F (140-150°C) for several hours to reduce any residual stresses in the material that might cause warping or other dimensional instabilities.

Any excess material, or flash, is trimmed off the edges, and masking paper or plastic film is applied to the surface of the finished sheets for protection during handling and shipping. The paper or film is often marked with the material's brand name, size, and handling instructions. Conformance with applicable safety or building code standards is also noted.

Continuous bulk polymerization

The continuous process is similar to the batch cell process, but because the sheets are thinner and smaller, the process times are much shorter. The syrup of monomer and catalyst is introduced at one end of a set of horizontal stainless steel belts running parallel, one above the other. The distance between the belts determines the thickness of the sheet to be formed.

The belts hold the reacting monomer and catalyst syrup between them and move it through a series of heating and cooling zones according to a programmed temperature cycle to cure the material.

Electric heaters or hot air may then anneal the material as it comes out of the end of the belts.

The sheets are cut to size and masking paper or plastic film is applied.

Quality Control

The storage, handling, and processing of the chemicals that make acrylic plastics are done under controlled environmental conditions to prevent contamination of the material or unsafe chemical reactions. The control of temperature is especially critical to the polymerization process. Even the initial temperatures of the monomer and catalyst are controlled before they are introduced into the mold. During the entire process, the temperature of the reacting material is monitored and controlled to ensure the heating and cooling cycles are the proper temperature and duration.

Samples of finished acrylic materials are also given periodic laboratory analysis to confirm physical, optical, and chemical properties.

Product Example CD Jewel Case
Full transcript