Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Teorema de Bayes

No description
by

on 11 April 2014

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Teorema de Bayes

El teorema de Bayes se utiliza para revisar probabilidades previamente calculadas cuando se posee nueva información. Desarrollado por el reverendo Thomas Bayes en el siglo XVII, el teorema de Bayes es una extensión de lo que ha aprendido hasta ahora acerca de la probabilidad condicional.

Comúnmente se inicia un análisis de probabilidades con una asignación inicial, probabilidad a priori. Cuando se tiene alguna información adicional se procede a calcular las probabilidades revisadas o a posteriori. El teorema de Bayes permite calcular las probabilidades a posteriori y es:


El teorema de Bayes parte de una situación en la que es posible conocer las probabilidades de que ocurran una serie de sucesos Ai. A esta se añade un suceso B cuya ocurrencia proporciona cierta información, porque las probabilidades de ocurrencia de B son distintas según el suceso Ai que haya ocurrido.
Conociendo que ha ocurrido el suceso B, la fórmula del teorema de Bayes nos indica como modifica esta información las probabilidades de los sucesos Ai.

¿Cuál será ahora la probabilidad de que esa persona sea diabética?
La respuesta que nos dá el teorema de bayes es que esa información adicional hace que la probabilidad sea ahora 0,595.
Vemos así que la información proporcionada por el análisis de sangre hace pasar, la probabilidad inicial de padecer diabetes de 0,03, a 0,595.
Evidentemente si la prueba del análisis de sangre hubiese sido negativa, esta información modificaría las probabilidades en sentido contrario. En este caso la probabilidad de padecer diabetes se reduciría a 0,0016.

Ejemplo: Si seleccionamos una persona al azar, la probabilidad de que sea diabética es 0,03. Obviamente la probabilidad de que no lo sea es 0,97. Si no disponemos de información adicional nada más podemos decir, pero supongamos que al realizar un análisis de sangre los niveles de glucosa son superiores a 1.000 mg/l, lo que ocurre en el 95% de los diabéticos y sólo en un 2% de las personas sanas.


Teorema de Bayes
Full transcript