### Present Remotely

Send the link below via email or IM

• Invited audience members will follow you as you navigate and present
• People invited to a presentation do not need a Prezi account
• This link expires 10 minutes after you close the presentation

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

# Curve Sketching

Calculus Unit 4 Outline
by

## Andrea Hanke

on 8 October 2017

Report abuse

#### Transcript of Curve Sketching

Calculus- Unit 4 Curve Sketching Find x & y
Intercepts x-Intercept -set y = 0
-solve for x y= x/(x^2-9)

0=x/(x^2-9)

0=x y-Intercept -set x = 0
-solve for y y= x/(x^2-9)

y=0/(〖(0)〗^2-9)

y=0/9

y=0 Check for
Discontinuities Vertical Asymptotes y= x/(x^2-9)

y=x/((x-3)(x+3))

va= ∓-3, +3 Holes y= (x-3)/(x^2-9)

y=(x-3)/(x-3)(x+3)

y=1/(x+3)

hole at x=+3 VA Limits 〖 lim of +3 〖behaviour=lim┬(x→->3-) 〗⁡〖x/(x^2-9)〗

= (+ve)/(-ve)

= -ve

∴y→ -> - infinity 〖behaviour=lim┬(x→->3-) 〗⁡〖x/(x^2-9)〗

= (+ve)/(-ve)

= -ve

∴y→ -> - infinity∞ lim of -3 Horizontal &
Oblique
Asymptotes Tester- Above & Below Critical Points Sign Table 1 Inflection Points Sign Table 2 Have Fun
& Graph y= x/(x^2-9) - divide through
by the highest
degree Horizontal Asymptotes Positive Infinity 〖=lim(x->infinity) (x/x^2 )/((x^2-9)/x^2 )

=lim(x->infinity) (1/x)/(1-(9/x^2 ))
= (0)/(1 -(0))
= 0/1
= 0
∞ behaviour =lim(x-3-) x/(x^2-9)

= (-ve)/(+ve)

= -ve

y -> - infinity 〖behaviour =lim┬(x->→-3+)〗 ⁡〖x/(x^2-9)〗

= (-ve)/(-ve)

= +ve

∴y→ -> +infinity∞ Negative Infinity =lim┬(x→->-infinity)⁡ (x/x^2 )/((x^2-9)/x^2 )

=lim┬(x→->-infinity)⁡ (1/x)/(1-9/x^2 ))
= 0/(1-(0))
=0/1
=0 Oblique Asymptotes x +5 R6
(x-3)/(x^2+2x-9)
-〖(x〗^2-3x)
-(0 +5x)
-(5x-15)
0 +6 y=(x^2+2x-9)/(x-3) HA tester =(x^2+2x-9)/(x-3) -0

=(x^2+2x-9)/(x-3) as x-> +infinity, y= above

tester=(x^2+2x-9)/(x-3)
=(+ve)+(+ve)/(+ve)
=+ve as x-> -infinity, y= below

tester =(x^2+2x-9)/(x-3)
=(+ve^2+-ve)(-ve)
=(+ve)/(-ve)
=-ve "The First Derivative Test" -take the first derviative
-set to zero
-solve for x
-x= max & min dy/dx=(1(x^2-9)-2x(x))/(〖(x〗^2-9)^2)

dy/dx= (x^2-9-2x^2)/((x^2-9)^2)

0=-x^2-9

x^2=-9

x=√(-9)^1/2

=DNE x<-3 -3<x<3 x>3

-x^2-9 - - -

x^2-9 + - +

x^2-9 + - +

dy/dx - - -

y "The Second Derivative Test" -take the second derivative
-set to zero
-solve for x
-x=inflection points x=-3 x=3 y=0 x<1/6 x>1/6
12x-2 - +

f''(x) - +

f'(x) concave
down concave
up Andrea
Hanke OA tester= remainder
= 6/(x-3) as x-> infinity, y= above

tester =6/(x-3)
= (+ve)/(+ve)
= +ve as x -> -infinity, y= below

tester= 6/(x-3)
= (+ve)/ (-ve)
= -ve -long divide By: No energy drinks were used in the creation of this prezi: Polynomial Rational f(x) = 3x^3-x^2+7
f'(x) = 6x^2-2x
f''(x) = 12x-2
0 = 12x-2
2/12 =x
1/6 =x f(x) = x/(x^2-9)
f'(x)= (x^2-9-2x^2)/(x^2-9)^2
=(-x^2-9)/(x^2-9)^2
f''(x)= (-2x(x^2-9)^2-(x^2-9)(2x)(-x^2-9))/(x^2-9)^2
0 = (-2(x^2-9)-2(2x)(-x^2-9))/(x^2-9)^3
= -2x^3+18x-4x(-x^2-9)
= -2x^3+18x+4x^3+36x
= 2x^3+54x
= 2x(x^2+27)
x = 0, DNE Polynomial Rational x<0 x>0

2x - +
(x^2+27) + +
(x^2-9)^3 - -
f''(x) + -

f'(x) concave
up concave
down
Full transcript