Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Compresores

No description
by

Diego Perez

on 16 October 2012

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Compresores

Presentado por:
Diego Perez
Pacheco Carriazo
Peña Hernandez COMPRESORES La función del compresor en una turbina de avion es suministrar la correcta cantidad de aire al combustible, y suministrarla con la correcta presión y velocidad. DEFINICION El principio básico de todos los compresores usados en los motores de turbina es el
mismo. El compresor convierte la energía mecánica de la turbina en energía cinética en el aire.
El compresor acelera al aire, que luego fluye a través de un difusor, el cual le reduce la
velocidad y convierte la mayoría de la energia cinética (velocidad) en energía potencial(presión) y alguna en calor.mayor parte del aire fluye desde el compresor hacia dentro de la sección de combustión,
pero parte de él, llamado aire sangrado del compresor, se usa para anti-hielo de los conductos
de entrada y para refrigerar piezas de la sección caliente. Otra parte del aire de sangrado se
usa para la presurización de cabina, el aire acondicionado, antihielo del combustible, y
arranque neumático de motores. Al aire sangrado para servir propósitos diferentes a la
operación del motor se le llama aire sangrado del cliente. energía cinética (velocidad) en energía potencial
(presión) y alguna en calor. Hay dos tipos básicos de compresores usados en los motores de turbina de gas: de flujo centrífugo y de flujo axial. Algunos motores usan una combinación de ambos tipos. PRINCIPIO DE FUNCIONAMIENTO Los motores de turbina de flujo centrífugo normalmente usan compresores de acero o titanio mecanizado, aunque en motores pequeños se están usando compresores de fundición. El difusor del compresor generalmente también está fabricado de fundición. En muchos casos el inductor o álabes guías, que suaviza y dirige el flujo de aire dentro del motor atenuando de esta forma el choque en el impulsor, está fabricado independientemente del impulsor o rotor. Los álabes del rotor pueden ser bien de longitud total, como en la figura 4-1, o algunos pueden ser de media longitud como en la figura 4-2. Es importante que exista un ajuste apretado entre el compresor y su carcasa con idea de obtener el máximo rendimiento del compresor. COMPRESOR CENTRIFUGO El aire entra en el ojo o centro del impulsor que gira a altas vueltas y es acelerado a una gran velocidad a medida que es lanzado hacia la periferia o borde exterior por la fuerza centrífuga. Entonces el aire a alta velocidad fluye dentro del difusor que se ajusta estrechamente alrededor de la periferia del impulsor. Allí fluye a través de conductos divergentes donde parte de la energía de velocidad se transforma en energía de presión. El aire con su velocidad reducida y su presión aumentada, fluye dentro del colector a través de una serie de álabes fijos curvos.Desde el colector, el aire fluye dentro de la sección de combustión del motor. Véase la figura 4-4. PRINCIPIO DE FUNCIONAMIENTO En algunos motores en los que el compresor y la rueda de turbina se equilibran como una unidad, se usan pernos o tuercas especiales que tienen ligeras variaciones en peso. Los cojinetes de apoyo del compresor pueden ser bien de bolas o de rodillos, aunque todos los fabricantes usan por lo menos un cojinete de bolas en el compresor para soportar las cargas radiales y axiales. Los compresores centrífugos se usaron en muchos de los primeros motores de turbina de gas por su robustez, poco peso, fácil construcción, y alta relación de presión por cada etapa de compresión. Un compresor centrífugo típico consta de tres componentes: el impulsor, el difusor, y el colector. Véase la figura 4-3. Los compresores de flujo axial son como su nombre implica, compresores en los que el aire pasa axialmente o derecho a través del compresor. Son mas pesados que el compresor centrífugo y mucho mas costosos de fabricar, pero son capaces de una relación de compresión total mucho mas alta, y tienen una sección transversal más pequeña que les hace ser masCfáciles de aerdinamizar. Por lo tanto los compresores de flujo axial se han llegado a estandarizar para los grandes motores de turbina de gas y se usan también en muchos motores pequeños.
Un compresor de flujo axial puede tener tan pocas como dos etapas, cuando se usa en conjunción con un compresor centrífugo (véase motor PT6) , o tantas como 18 etapas en algunos de los grandes motores turbofanes de doble compresor.Los motores de flujo axial tienen compresores que están construidos de varios materialesdiferentes dependiendo de la carga y temperatura bajo las cuales la unidad debe operar. COMPRENSOR FLUJO AXIAL Los compresores de flujo axial están constituidos de un numero de etapas de álabes rotatorios que son arrastradas por la turbina, y que giran entre las etapas de álabes estátores o fijos.
Ambos, los álabes rotatorios o de rotor y los álabes de estátor o fijos, tienen formas de perfiles aerodinámicos y están montados de manera que forman una serie de pasos divergentes a través de los cuales el aire fluye en una dirección axial al eje de rotación.A diferencia de unaturbina que también emplea álabes de rotor y álabes fijos de estátor, el camino del flujo de un compresor axial disminuye en área de sección transversal en la dirección del flujo, reduciendo el volumen del aire a medida que progresa la compresión de escalón a escalón y manteniendo el volumen del aire a medida que progresa la compresión de escalón a escalón y manteniendo constante la velocidad axial del aire a medida que la densidad aumenta a lo largo de toda la longitud del compresor. La convergencia del paso anular del aire se consigue por medio de laconicidad del cárter o del rotor. También es posible una combinación de ambos. PRINCIPIO DE FUNCIONAMIENTO Tras dejar los álabes guías, el aire entra en el primer escalón de compresión. Los álabes rotatorios, girados a alta velocidad por la turbina, recogen el aire y lo fuerzan hacia atrás a través de sus perfiles aerodinámicos. La energía extraída desde la turbina se añade al aire según pasa a través del rotor, y el aire se acelera. El aire deja los bordes de salida de los álabes rotatorios y fluye entre los álabes de estátor. Estos álabes guías forman una serie de pasos divergentes, y según el aire fluye a través de ellos, su presión aumenta y su velocidad cae hasta su valor original. El aire pasa a través de todas las etapas de compresión y luego deja al compresor a través de un conjunto de álabes guías de salida. A medida que se desplaza por el compresor, el aire fluye en línea recta mas o menos, girándose normalmente menos de 180º. Los álabes guías de salida eliminan este giro y dirigen al aire dentro del difusor, donde se prepara para la sección de combustión. TIPOS DE COMPRESOR AXIAL Hasta este momento, los compresores de flujo axial tratados han sido compresores simples.Esto quiere decir que solamente hay un elemento de rotación. Por medio del uso de dos compresores en los motores grandes se consigue un rendimiento adicional. A este tipo de motor se le llama un motor de doble compresor o doble carrete. también se gana rendimientoCpropulsivo adicional por medio del motor turbofan, que esencialmente es una tercera etapa de compresión de flujo axial. Existe una limitación para el número de etapas de compresión que puede incorporarse en un compresor de flujo axial. Si hay demasiadas, las últimas etapas estarán trabajando a bajo rendimiento mientras que las etapas delanteras estarán sobrecargadas. Esto restringe el flujo de aire a través del compresor y puede conducir a un atasco del compresor o surge. Esta sobrecarga puede evitarse sangrando parte del aire de interetapas durante la operación a potencia parcial, pero esto es desperdiciar la potencia. Prácticamente todos los modernos turborreactores y turbofanes de gran potencia tienen compresores separados de dos o mas compresores, cada uno arrastrado o arrastrados por su propia etapa, o etapas, de turbinas. Compresores de Flujo Axial de un solo compresor Compresores de Flujo Axial de Doble Compresor La figura 4-10 ilustra un moderno motor turborreactor de doble compresor. El compresor posterior o de alta presión, está conectado y arrastrado a través de un eje hueco por la primera, o delantera, etapa de turbina. Este se llama el compresor N2, y su velocidad está controlada por el control de combustible, a causa de su peso más ligero, es el girado por la puesta en marcha durante el arranque del motor. ACOPLAMIENTO DE LOS ALABES Los álabes del compresor no están rígidamente unidos al tambor del compresor o a los discos, sino que están sueltos en sus bases de manera que están libres para balancearse. Cuando el motor está funcionando, la fuerza centrífuga mantiene a los álabes en su posición correcta. El que los álabes estén sueltos evita esfuerzos en la raíz. Una forma generalizada de unir los álabes a los discos es por el método de ajuste en cola de milano mostrado en la figura 4-13.Los álabes fijos de estátor están montados en anillos de retención que están unidos a la carcasa del compresor. DISEÑO DEL ALABE Casi todos los álabes de compresor están diseñados con cierto torcimiento para darles el correcto gradiente de presión a lo largo de su longitud a medida que su velocidad cambia de la raíz a la punta.
La punta de un álabe de compresor es de suma
importancia. Algunas puntas de álabes son cuadradas, y otras tienen reducido el espesor. Estas puntas con el espesor reducido se llaman puntas de perfil. Las puntas más delgadas tienen una alta frecuencia de resonancia natural y por lo tanto no están sujetas a las vibraciones que afectarían a un álabe con la punta cuadrada. La punta de perfil también proporciona una forma aerodinámicamente más rentable para el aire a alta velocidad movido por el álabe. Estas puntas de perfil con frecuencia rozan el cárter y hacen un ruido de chirrido según se va parando el motor. Por este motivo a las puntas de álabe de perfil a menudo se les llaman puntas chillonas. EL TURBO FAN En principio, un turbofan (llamado fan-jet por algunas líneas aéreas comerciales) es muy parecido a un turbohélice excepto que la relación del flujo de aire secundario (el flujo de aire a través del fan o hélice) al flujo de aire primario a través del motor básico es menos (esto se llama relación de paso). También, en el turbofan, la hélice arrastrada por engranajes es sustituida por un fan de flujo axial dentro de un conducto, con álabes giratorios y álabes guías estacionarios que son considerablemente grandes pero de otra forma parecidos a los álabes rotatorios y álabes guías de un compresor de flujo axial.Las ventajas del bajo consumo específico de combustible, un nivel de ruido mas bajo, y un rendimiento propulsivo altamente mejorado han hecho que los motores turbofanes estén a punto de sustituir a los reactores para la mayoría de las operaciones, comerciales de líneas aéreas, y militares. CONFIGURACIONES DEL TURBOFAN Hay dos configuraciones principales para el turbofan, cada una de las cuales tiene sus ventajas; una configuración sitúa el fan delante del motor, mientras en la otra, el fan está en la parte posterior del motor, El primero, llamado motor de fan delantero, es el tipo generalmente usado hoy día. En un motor de fan delantero de doble compresor, el fan es una parte integral del compresor de baja presión. Hay también un diseño de motor de fan delantero que tiene tres turbinas independientes y tres ejes de arrastre independientes. La turbina posterior arrastra solamente al fan, mientras que las turbinas intermedia y delantera arrastran a un compresor de baja presión delantero y a un compresor trasero de alta presión respectivamente. En la otra configuración de turbofan (llamado motor de fan posterior, el fan está montado en la parte trasera del motor donde forma el aro o perímetro exterior de una turbina libre que gira por si misma en la corriente de escape del motor. De todos estos tipos, solo se ilustra en este libro el motor de fan delantero de doble compresor. En ambas configuraciones de fan, delantero y posterior, el fan hace una contribución sustancial al empuje total. Además del empuje desarrollado por el motor básico, el fan acelera el aire que pasa a través de él de una manera similar a la hélice de un turbohélice, los fanes de los motores turbofanes producen entre un 30 y un 75 por ciento del empuje total, la cantidad real depende principalmente de la relación de paso. EQUILIBRADO DEL FAN El equilibrado de un rotor de compresor o rueda de fan es una operación extremadamente importante en su fabricación. Debido a las grandes masas de materiales y a sus altas velocidades de rotación, cualquier desequilibrio en los conjuntos principales en rotación es capaz de producir vibración y esfuerzos que aumentan como el cuadrado de la velocidad rotacional y podrían afectar a los puntos de apoyo (cojinetes) de los ejes de rotación y al funcionamiento del motor. El equilibrado preciso de estas piezas en rotación se efectúa en una máquina especial de equilibrado (equilibradora)
• Obstrucción de la entrada de flujo de aire
• Excesiva presión en la sección del quemador
• Brusca maniobra de vuelo que impida que el aire fluya directamente dentro del conducto de
entrada de aire.
• Ahogo del flujo de aire a través del motor
• Alta componente de viento cruzado, especialmente en el despegue y a baja velocidad Algunas de las causas de entrada en pérdida del compresor son: DIFUSOR PRE-CAMARAS A la salida del último estator de compresor (denominado conjunto de álabesguía de salida) el flujo de aire tiene una velocidad sensiblemente uniforme en sentido axial. Es entonces cuando, antes de entrar en la zona de combustión pasa por un conducto divergente (Difusor) en el que se reduce la velocidad y se incrementa la presión del aire. La razón de ser del Difusor es adecuar la velocidad del aire para su entrada en la(s) cámara(s) de combustión de tal forma que permita una atomización adecuada del combustible inyectado en ellas, una correcta combustión en su interior, así como que la llama quede anclada en la zona anterior de cámara(s) y no se produzca el apagado de llama porque esta sea barrida por la corriente de aire.
Full transcript