Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Medidas de posición de tendencia central

No description
by

Estefania Arredondo

on 8 September 2015

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Medidas de posición de tendencia central

Media aritmética o promedio para datos agrupados y no agrupados
Media aritmética para datos agrupados
Se calcula sumando todos los productos de marca clase con la frecuencia absoluta respectiva y su resultado dividirlo por el número total de datos:
Mediana para datos agrupados y no agrupados
La mediana, llamada algunas veces media posicional, es el valor del término medio que divide una distribución de datos ordenados en dos partes iguales, es decir, el 50% de los datos se ubican sobre la mediana o hacia los puntajes altos y el 50% restante hacia los puntajes bajos.

La Mediana no tiene propiedades que le permite intervenir en desarrollos algebraicos como la media aritmética, sin embargo, posee propiedades que ponen en evidencia ciertas cualidades de un conjunto de datos, lo cual no ocurre con la media aritmética que promedia todos los valores y suprime sus individualidades. En cambio, la mediana destaca los valores individuales.

Tiene la ventaja de no estar afectada por las observaciones extremas, ya que no depende de los valores que toma la variable, sino del orden de las mismas.

Para el cálculo de la mediana interesa que los valores estén ordenados de menor a mayor.

Su aplicación se ve limitada, ya que solo considera el orden jerárquico de los datos y no alguna propiedad propia de los datos, como en el caso de la media aritmética.

La moda
La moda es la medida que se relaciona con la frecuencia con que se presenta el dato o los datos con mayor incidencia, con lo que se considera la posibilidad de que exista más de una moda para un conjunto de datos. La notación mas frecuente es la siguiente: Mo y . Esta medida se puede aparecer tanto para datos cualitativos como cuantitativos. Se dice que cuando un conjunto de datos tiene una moda la muestra es unimodal, cuando tiene dos modas bimodal, cuando la muestra contiene mas de un dato repetido se dice que es multimodal y un último caso es cuando ningún dato tiene una frecuencia, en dicho caso se dice que la muestra es amodal.
Medidas de posición de tendencia central
Ejemplos:

1.- Determinar la moda del siguiente conjunto de datos:



a).- 1, 2, 3, 3, 4 , 5, 6, 7, 7, 3, 1, 9, 3

La moda de este conjunto de datos es igual a 3 y si considera unimodal

b).- 1, 2, 3, 4, 4, 5, 2, 1, 3, 4, 2, -3, 4, 6, 3, 3

Las modas de este conjunto de datos son 3 y 4 ya que ambas tienen la mas alta frecuencia, por lo que la muestra es bimodal

c).- 1, 2, 3, 4, 5, 6, 7, 8, 9La muestra no contiene ningún dato repetido por lo que se considera que la muestra es amodal.

Las medidas de tendencia central son valores que se ubican al centro de un conjunto de datos ordenados según su magnitud. Generalmente se utilizan 4 de estos valores también conocidos como estadigrafos, la media aritmética, la mediana, la moda y al rango medio.
La media aritmética es la medida de posición utilizada con más frecuencia. Si se tienen n valores de observaciones, la media aritmética es la suma de todos y caca uno de los valores dividida entre el total de valores: Lo que indica que puede ser afectada por los valores extremos, por lo que puede dar una imagen distorcionada de la información de los datos.
La Mediana, es el valor que ocupa la posición central en un conjunto de datos, que deben estar ordenados, de esta manera la mitad de las observaciones es menor que la mediana y la otra mitad es mayor que la mediana, resulta muy apropiada cuando se poseen observaciones extremas.
La Moda es el valor de un conjunto de datos que aparece con mayor frecuencia. No depende de valores extremos, pero es más variables que la media y la mediana.
Rango Medio es la media de las observaciones menor y mayor. como intervienen solamente estas observaciones, si hay valores extremos, se distorsiona como medida de posición, pero ofrece un valor adecuado, rápido y sencillo para resumir al conjunto de datos.
Media aritmética para datos no agrupados
Podemos diferenciar la fórmula del promedio simple para datos poblaciones y muestrales:
Observe que la variación de ambas fórmulas radica en el tamaño de los datos (N identifica el tamaño de la población, mientras que n el de la muestra).

Ejemplo: la media aritmética para datos no agrupados
El profesor de la materia de estadística desea conocer el promedio de las notas finales de los 10 alumnos de la clase. Las notas de los alumnos son:
3,2 3,1 2,4 4,0 3,5
3,0 3,5 3,8 4,2 4,0
¿Cuál es el promedio de notas de los alumnos de la clase?
SOLUCIÓN
Aplicando la fórmula para datos no agrupados tenemos:
Cabe anotar que en el ejemplo estamos hablando de una población correspondiente a todos los alumnos de la clase (10 alumnos en total). El promedio de las notas es de 3,47.
Modifiquemos la primera nota por 0,0 y calculemos nuevamente la media aritmética.
En este caso la media pasa de 3,47 a 3,15. Esta variación notoria se debió a que la media aritmética es sensible a los valores extremos cuando tratamos con pocos datos. El 0,0 es una nota atípica comparada con las demás, que están ubicadas entre 3,0 y 4,2.
PARA DATOS NO AGRUPADOS
La mediana es el dato que se encuentra a la mitad de la lista. Para calcular su posición se aplica la siguiente ecuación:

Monografias.com

Ejemplo ilustrativo:

Calcular la mediana de las siguientes calificaciones del curso de Estadística evaluadas sobre diez: 10, 8, 6, 4, 9, 7, 10, 9 y 6

Solución:

1) Se ordena los datos de menor a mayor:

Monografias.com

2) Se aplica la ecuación:


La mediana es el valor de x5 (quinto dato), es decir, Md=8


Es el valor que ocupa el lugar central de todos los datos cuando éstos están ordenados de menor a mayor.
La mediana se representa por Me.
La mediana se puede hallar sólo para variables cuantitativas.
Cálculo de la mediana para datos agrupados
La mediana se encuentra en el intervalo donde la frecuencia acumulada llega hasta la mitad de la suma de las frecuencias absolutas.

Es decir tenemos que buscar el intervalo en el que se encuentre. N / 2

Luego calculamos según la siguiente fórmula:
Li-1 :es el límite inferior de la clase donde se encuentra la mediana

N / 2 :es la semisuma de las frecuencias absolutas.

Fi-1 :es la frecuencia acumulada anterior a la clase mediana.
fi : es la frecuencia absoluta del intervalo mediano.
ti :es la amplitud de los intervalos.
Para calcular la media aritmética, sumamos todos los datos y dividimos entre el número de datos.
Para calculara la mediana, se ordenan los datos y se encuentra el punto medio de éstos (la posición (n+1)/2). Si la media y la mediana coinciden, la distribución es simétrica. Si la media es mayor que la mediana, la distribución es asimétrica positiva; si la mediana es mayor, la distribución es asimétrica negativa.
Media geométrica
La media geométrica (MG), de un conjunto de números positivos se define como la n- del producto de los números. Por tanto, la fórmula para la media geométrica es dada por
Existen dos usos principales de la media geométrica:
1. Para promediar porcentajes, indices y cifras relativas y
2. Para determinar el incremento porcentual promedio en ventas, producción u otras actividades o series económicas de un periodo a otro.
Supóngase que las utilidades obtenidas por una compañía constructora en cuatro proyectos fueron de 3, 2, 4 y 6%, respectivamente. ¿ Cúal es la media geométrica de las ganancias?.
En este ejemplo y asi la media geométrica es determinada por
y así la media geométrica de las utilidades es el 3.46%.
La media aritmética de los valores anteriores es 3.75%. Aunque el valor 6% no es muy grande, hace que la media aritmética se incline hacia valores elevados. La media geométrica no se ve tan afectada por valores extremos.
Media armónica
La media armónica (H) de un conjunto de elementos no nulos (X1, X2,…,XN) es el recíproco de la suma de los recíprocos (donde 1/Xi es el recíproco de Xi)) multiplicado por el número de elementos del conjunto (N).
La media armónica es la recíproca de la media aritmética. Los elementos del conjunto deben ser necesariamente no nulos. Esta media es poco sensible a los valores grandes, pero muy sensible a los valores próximos a cero, ya que los recíprocos 1/Xi son muy altos.
La media armónica no tiene un uso muy extenso en el mundo científico. Suele utilizarse principalmente para calcular la media de velocidades, tiempos o en electrónica.
Ejemplo
Un tren realiza un trayecto de 400km. La vía tiene en mal estado que no permitían correr. Los primeros 100 km los recorre a 120km/h, los siguientes 100km la vía está en mal estado y va a 20km/h, los terceros a 100km/h y los 100 últimos a 130km/h. Para calcular el promedio de velocidades, calculamos la media armónica.
La media armónica es de H=52,61km/h.
Full transcript