Loading presentation...

### Present Remotely

Send the link below via email or IM

Present to your audience

• Invited audience members will follow you as you navigate and present
• People invited to a presentation do not need a Prezi account
• This link expires 10 minutes after you close the presentation
• A maximum of 30 users can follow your presentation
• Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

# Mathematica

No description
by

## Nicole Resendiz

on 5 October 2012

#### Comments (0)

Please log in to add your comment.

Report abuse

#### Transcript of Mathematica

Introducción a Programación Funcional Wolfram Mathematica Profesor a cargo del curso: Dr. Jaime Rangel Mondragón Circle Graphics[{Table[Circle[{0,0},r],{r,100}],EdgeForm[Thick],Red,Table[Circle[{1,0},r],{r,50}]}] Graphics[Table[Circle[{0,0},r],{r,5}]] Table[Circle[{0,0},r],{r,5}]
Output:
{Circle[{0,0},1],Circle[{0,0},2],
Circle[{0,0},3],Circle[{0,0},4],
Circle[{0,0},5]} Graphics[{EdgeForm[Thick],Red,Table[Circle[{1,0},r],{r,50}]}] Graphics[{Table[Circle[{0,0},r],{r,100}],
EdgeForm[Thick],Red,Table[Circle[{1,0},r],{r,50}]}
,Axes ->True] DISK Graphics[{EdgeForm[Thin],Orange,Disk[{1/2,1/2},+1/3]EdgeForm[Thick],Pink,Rectangle[{0,0},{1,1}],Red,Disk[{0,0},1/3],Green,Disk[{1,1},1/3],Black,Disk[{0,1},1/3],Purple,Disk[{1,0},1/3],EdgeForm[Thin],Blue,Disk[{1/2,1/2},-1/3]}] Graphics[{EdgeForm[Thick],Pink,Rectangle[{0,0},{1,1}]}] Graphics[{EdgeForm[Thick],Pink,Rectangle[{0,0},{1,1}]},Axes->True] Graphics[{Blue,Disk[{1/2,1/2},1/3]},Axes->True] Graphics[{EdgeForm[Thick],Pink,Rectangle[{0,0},{1,1}],Red,Disk[{0,0},1/3],
Green,Disk[{1,1},1/3],Black,Disk[{0,1},1/3], Purple,Disk[{1,0},1/3],
Blue,Disk[{1/2,1/2},1/3]},Axes->True] Plot Plot[{x2,2x},{x,-1,1}] MATHEMATICA El concepto visionario de Mathematica nos permite crear, de una vez por todas, un sistema único que pudiera manejar todos los distintos aspectos de la computación técnica —y más aún— de una manera coherente y unificada. Esta herramienta, nos permite trabajar desde los conceptos más sencillos... Hasta los más sofisticados... A continuación se presentaran algunos ejemplos del
uso de Mathematica MatrixForm m = Table[i + j, {i, 10}, {j, 7}]; MatrixForm[m] Table[i + j, {i, 10}, {j, 7}] {{2, 3, 4, 5, 6, 7, 8}, {3, 4, 5, 6, 7, 8, 9}, {4, 5, 6, 7, 8, 9, 10}, {5, 6, 7, 8, 9, 10, 11}, {6, 7, 8, 9, 10, 11, 12}, {7, 8, 9, 10, 11, 12, 13}, {8, 9, 10, 11, 12, 13, 14}, {9, 10, 11, 12, 13, 14,15}, {10, 11, 12, 13, 14, 15, 16}, {11, 12, 13, 14, 15, 16, 17}} Output: Lines Graphics[Line[{{1, 3}, {3, 3}}]] Graphics[Line[{{1, 3}, {3, 3}, {3, 5}, {1, 5}}], Axes -> True] Geometry Graphics[{Line[{{-1, 0}, {1, 0}}], Line[{{0, 1}, {0, -1}}],
Circle[{0, 0}, 1]}] ArrayPlot Genera una trama en la que los valores en una matriz se muestran en una matriz discreta de cuadrados.
Directiva de colores Con función algebraica Manipulate[ArrayPlot[Array[GCD, {50, 50}], ColorFunction -> (Hue[Mod[# + a, 1]] &),ColorFunctionScaling -> True], {a, 0, 1}]
Resultado Numeros complejos Funciones Trigonometricas Alumnos: *Juan Pablo León
*Ana María Vargas
*Nicole Resendiz RANGE m = Range[20] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,20} Partition[m, 5] {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15}, {16, 17, 18,19, 20}}
Full transcript