Loading presentation...

Present Remotely

Send the link below via email or IM


Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.


Untitled Prezi

No description

yuni chairani

on 23 April 2013

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Untitled Prezi

april 18 2013 abstract algebra
session - 6 today, we will learn about: SUB GRUP 1. ( Zm, Xm)
2. permutation group
3. another examples of group
3. sub- group grup ?
sifat - sifat grup ? a x b = (a x b) mod m (Zm, Xm) group ? Theorem
The order of Sn is n!
If n = 3, then Sn is non-Abelian. permutation group Definition

A subset H of a group G is a subgroup of G if H itself a group with respect to the operation on G. review... m m Definition
A permutation of a nonempty set S is bijective mapping from S to S.. Theorem 6. 2 The set of all permutations of a nonempty set S is a group with respect to composition. Lemma 7. 2 Let (G,*) be a group, and H c G.
(a) If f is identity of H and e is identity of G,
then f = e.
(b) If a is in H, then the inverse of a in H is the same as the inverse of a in G. tidak sejati sejati sub grup G dan E, dengan E = {e} E < H < G order grup --> o(G) atau #G Teorema Lagrange:
Jika G grup hingga dan H subgrup dari G maka o(H) merupakan pembagi dari o(G) akibat :
untuk semua k bilangan bulat positif
dengan k|m maka himpunan <m/k> adalah subgrup dari Zm dengan order k Z adalah himpunan semua bilangan bulat modulo 36, sajikan semua subgrup dari Z 36 36 other examples of GROUP 2 "subgroup" theorems 1. "one step subgroup test" theorm.

2. "two steps subgroup test" theorm Let (G,*) be a group and H is a nonempty subset of G. H is a subgroup of G if:

(a) If a,b element of H, then a * b element of H, and
(b) If a element of H, then element invers of a is in H.

Let (G,*) be a group and H is a nonempty subset of G.
H is a subgroup of G if:
(a) H is nonempty, and
(b) If a,b element of H, then a * b is in H. one step two steps -1 grup siklis
Full transcript