Loading presentation...

Present Remotely

Send the link below via email or IM


Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.


Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Chapter 8: Systems of Equations

- systems of equations - types of solutions for linear SOE - graphing & finding # of solutions - substitutions/elimination - graphing systems of inequalities - linear programming

Mary Sellers

on 13 May 2011

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Chapter 8: Systems of Equations

Chapter 8: Systems of Equations Group 2 Chelsey Balestra
Mary Sellers
Brittany Cole
& Hayden Gibson What is a System of Equations? A system of equations is when you have two or more equations using the same variables. The solution to the system is the point that satisfies ALL of the equations. This point will be an ordered pair. When graphing, you will encounter three possibilities _ Intersecting Lines: The point where the lines intersect is your solution.
_ Parallel Lines: These lines never intersect! Since the lines never cross, there is NO SOLUTION! Parallel lines have the same slope with different y-intercepts.
_ Coinciding Lines: These lines are the same! Since the lines are on top of each other, there are INFINITELY MANY SOLUTIONS! Coinciding lines have the same slope and y-intercepts. When graphing equations, graph using the x- &y- intercepts (plug in zeros)
ex: 2x + y = 4
x - y = 2
2x + y = 4 x - y = 2
(0,4) and (2,0) (0,-2) and (2,0)
then graph the ordered pairs.
Where do the lines intersect? They intersect at (2,0)! Be sure to check your answers!
Plug the point back into both equations. . .
does it work? yes! How to tell if a line is "intersecting", "parallel", or "coinsiding": The system has exactly 1 solution.
Systems have 1 and only 1 solution when the two lines have different slope. Think about it, if the two lines have different slopes then eventually at some point they must meet. After all the lines are not parallel.
Full transcript