### Present Remotely

Send the link below via email or IM

• Invited audience members will follow you as you navigate and present
• People invited to a presentation do not need a Prezi account
• This link expires 10 minutes after you close the presentation

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

# Physics Free Fall Lab

No description
by

## Erika Lipford

on 6 September 2012

Report abuse

#### Transcript of Physics Free Fall Lab

Physics Free Fall Lab By: Jordan Martin, Qusay Multani, Erika Lipford, and Allison O'Brien The purpose of this lab is to find the gravitational acceleration of the objects falling freely and to prove that it is the same with any type of object Purpose We are using the following:
1.Smart Timer
2. Stand
3. Time of flight accessory
4.Control box
5. Drop box
6. A Golf ball, a large,clear, and hollow ball,as well as a small yellow ball. Apparatus 1.First, we prepared the freefall apparatus for our testing purposes.
2. We then measured the distance between the landing pad and the ball, which was kept at 74 cm.
3. We then proceeded to attach the first ball to the apparatus.
4. We then released the ball from the apparatus and recorded the time it took the ball to fall. This was repeated 4 times for each ball.
5.This procedure was repeated four times each with the golf ball and the small yellow ball. Procedure With the data that has been collected, it can be deciphered that an object with a high mass may not actually fall faster than other objects. The golf ball indeed did not fall the fastest. This was most likely due to air resistance that slowed the ball down.

The graphs shown previously describe that the largest ball in size accelerated the fastest, while the smallest one with little mass accelerated slower than the rest. Analysis of Data Graphs Large Ball:
%Error=19.8-9.1351/9.8 x 100
6.76%
Golf Ball:
%Error=19.8-9.4661/9.8 x100
3.41%
Yellow Ball:
% Error=19.8-10.3831/9.8 x 100
5.95% Accuracy According to our hypothesis(which was correct), the mass of an object does not have an effect on gravitational acceleration.
Our data, along with the equation d=1/2at^2 clearly showed that the golf ball, even though had the highest mass, only had the second highest descent.
Our variables, including the constant distance, allowed us to measure the amount of time each ball took to fall to the floor. We compared the ball's mass to how long it took to fall, as well as the height to the time. all of these showed the the large plastic ball had the highest acceleration, even tough it did not have the highest mass.
New terms that came from the experiment were graphical Analysis and the predictable range.
Our results differed from the expected 9.8m/s^2, this is most likely due to mistakes in measurement control and instrument usage. . Conclusion Data Dependent and independent
Variables Summary Calculations Clear Large Ball 74cm=1/2a(.3678s)^2
74cm=1/2a(.1318s)
74cm=.0676as^2
a=9.1351m/s2 Golf Ball 74cm=1/2a(.3743s)^2
74cm=1/2a(.1401s)
74cm=.07005as^2
a=9.4662m/s2 Small Yellow Ball 74cm=1/2a(.3920s)^2
74cm=1/2a(.1536s)
74cm=.07683as^2
a=10.383m/s2 In this lab we discovered the value of the acceleration gravity has on an object. We found this with three balls that were of different size and mass. The acceleration of gravity was to be found with the equation of d=1/2at^2. This was completed within our group with an experimental accuracy of 7%.
Issues came about most likely due to human carelessness, not being exact and watchful for all of the small details or wrongly measured components. These percent errors are mos likely caused by human error; More specifically, our measurements. If more attention was placed to how far the ball was from the ground when it was placed on the magnet, then we would have recieved more accurate results. Error Analysis We all believe that the large plastic ball will have the highest acceleration and fall first. Weight Acceleration The height compared to the amount of time it took the ball to fall, and Mass vs. time show that even though there was a great difference in mass, and the height was the same, that the heaviest ball did not fall the fastest, rather the one with the second highest mass did.
Full transcript