Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Lab Bio: DNA History

Image Credits: Biology (Campbell) 9th edition, copyright Pearson 2011, & The Internet. Provided under the terms of a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. Original by David Knuffke.
by

Christopher Himmelheber

on 28 January 2016

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Lab Bio: DNA History

DNA:A History
Back to the 20th Century
Frederick Griffith: Transformation
Avery, McCarty & MacLeod:
Griffiths Refined
Hershey & Chase:
The "Blender" Experiment
Erwin Chargaff's "Rules"
Watson & Crick,
Franklin & Wilkins
The First Puzzle Solved!
1928
1944
1952
1950 - 1952
1953
By the middle of the 20th century, genetics was well established.

It was known that traits were inherited, but it was not known how that process happened.

What were genes made of? How did they work?

Nobody knew.

The discovery of DNA's role in inheritance is arguably the most significant contribution to understanding how life works.

It was not the result of any one person, but the final result of decades of investigation by many different researchers.
Chromosomes
Observation of chromosomes during cell division demonstrates that they act in a way consistent with molecules of heredity.

Chromosomes are made of 2 ingredients:
DNA
Protein.

Heritability is controlled by one of these two molecules.

Before 1940 (or so), most biologists thought that protein was probably the molecule responsible for inheritance.

No one had any idea about DNA's structure or function.
A Scottish Microbiologist

Discovered that bacteria could give other bacteria heritable traits, even after they were dead.

That's where he left it.
The two forms of Streptococcus pneumoniae
R (rough, on left) is harmless
S (smooth, on right) is pathogenic.
Oswald
Avery
Maclyn
McCarty
Colin
MacLeod
Refined Griffith's Experiment

Exposed R-strain Streptococcus to purified S-strain protein, and purified S-strain DNA

Only the bacteria exposed to the S-strain DNA were transformed

Not enough evidence for the haters
Alfred
Hershey
Martha
Chase
Worked with
bacteriophages


Conclusively demonstrated that DNA was the molecule of heredity by tagging phage DNA and protein with radioactive atoms and tracking the transmission of that radioactivity to infected bacteria

Nobel Prize: Hershey (1969)
A colorized electron micrograph showing bacteriophages infecting an E. coli cell by injecting DNA
AHA!
An Austrian Biochemist

Demonstrated two major rules of DNA composition
1. All species have different amounts of the four bases in their DNA.

2. In every species:
the amount of adenine = the amount of thymine
and
the amount of cytosine = the amount of guanine
Why does this matter?
James
Watson
Francis
Crick
Rosalind
Franklin
Maurice
Wilkins
Two competing teams to determimne the structure of DNA

Watson and Crick used X-ray diffraction data developed by Rosalind Franklin to develop their "double helix" model of DNA

Nobel Prize: Watson, Crick & Wilkins (1962)
Photo 51: The crucial data used by Watson & Crick
The Double-Helix Model of DNA
Understanding DNA structure helps explain its role in heredity
Bases on one strand are covalently bonded to each other

Bases on opposite strands are hydrogen bonded to each other ("
base pairs
").

Adenine = Thymine
Cytosine = Guanine
Big Questions:
Make Sure You Can:
Friedrich Miescher

Discovered nucleic acids (1869)
What does DNA look like?

How does DNA work?

How was the structure and function of DNA determined?
Explain how the structure of DNA is related to its function as the information storage molecule in living systems.

Explain the contributions of all scientists discussed in this presentation to understanding DNA structure.

Describe how the historical development of scientific understanding of the structure of DNA is an example of science as a collaborative, evidentiary, and technological process.
The Helix Unwound
Full transcript