Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Untitled Prezi

No description
by

Oscar R dos Santos

on 6 March 2013

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Untitled Prezi

photo credit Nasa / Goddard Space Flight Center / Reto Stöckli Prof. Oscar Capitulo 17 - Ondas II 17.2 Ondas Sonoras
  São ondas longitudinais, que se propagam num meio material. Podem ser utilizadas em prospecção sísmica (localização de poços de petróleo), em localização por sonar (navios, submarinos), na exploração de partes moles do corpo humano (ultra-som), etc.
A figura ao lado mostra uma onda sonora se propagando a partir de uma fonte pontual. As frentes de onda formam esferas centradas em S; os raios são radiais partindo de S. As setas duplas pequenas indicam que os elementos do meio oscilam paralelamente aos raios. Nas proximidades de uma fonte pontual, as frentes de ondas são esféricas e se espalham nas três dimensões. As ondas sonoras são a base de incontáveis estudos científicos em muitas áreas: fisiologia da fonação e audição, tratamento acústico de ambientes, ondas de choque na aviação, ruídos produzidos pelo corpo humano pode indicar problemas no funcionamento de órgãos, localização da fonte de emissão sonora. 17.1 Introdução A unidade de B também é Pascal (Pa).
O sinal (-) foi incluído de modo que B seja sempre positivo. A velocidade de qualquer onda mecânica depende tanto das propriedades inerciais do meio quanto das suas propriedades elásticas. De acordo com o que foi visto para a corda,



Quando uma onda sonora se propaga através do ar, a propriedade que determina o quanto um elemento de um meio modifica seu volume quando a pressão sobre ele varia, é o módulo de elasticidade volumétrica B. 17.3 A Velocidade do Som Velocidade do som.
Onde B é a elasticidade volumétrica e rô ρ é a densidade do meio.
Esta equação pode ser deduzida aplicando-se as leis de Newton. Substituindo T por B e μ por ρrô, obtemos: (b) Uma vista expandida horizontalmente de uma pequena porção do tubo, observa-se um elemento de ar de espessura Δx que oscila para a esquerda e para a direita em mhs em torno de sua posição de equilíbrio. A figura abaixo mostra (a) uma onda sonora se propagando com velocidade através de um tubo longo cheio de ar, produzindo um padrão periódico de expansões e compressões do ar. 17.4 Ondas Sonoras Progressivas A amplitude de pressão Δpm está relacionada com a amplitude de deslocamento Sm por:





Na figura ao lado, pode-se notar que o deslocamento e a variação de pressão estão defasados de π/2 rad=90º. Assim, por exemplo, a variação de pressão Δp será nula quando houver um máximo do deslocamento. Quando uma onda se move, a pressão do ar em qualquer posição varia senoidalmente, Os deslocamentos do elemento de ar pode ser descrito pela função: A amplitude máxima de pressão Δpm que o ouvido humano pode suportar em sons altos é cerca de 28Pa (que é muito menor que a pressão normal do ar de aproximadamente 105Pa). Qual é a amplitude de deslocamento Sm para tal som no ar de densidade ρ=1,21kg/m3, com uma freqüência de 1000Hz e uma velocidade de 343m/s? Exemplo 1: Exemplo 2:
A figura ao lado mostra duas fontes pontuais S1 e S2, que estão em fase e separadas pela distância D=1,5λLâmbda, emitem ondas sonoras idênticas de comprimento de onda λ. (a) Qual é a diferença de percurso das ondas e no ponto P1, que se situa sobre a perpendicular que passa pelo ponto médio da distância D, a uma distância maior que do que D das fontes? Que tipo de interferência ocorre em P1? (b) Quais são a diferença de percurso e o tipo da interferência no ponto P2? Isto ocorre quando: Para m=0, 1, 2, 3, ... Para interferência completamente destrutiva Onda sonora Onde P é a taxa temporal de transferência da energia (Potência) da onda sonora e A é a área da superfície que intercepta o som. A intensidade I está relacionada à amplitude do deslocamento Sm da onda sonora por: Intensidade I de uma onda sonora em uma superfície é a taxa média, por unidade de área, com que a energia é transferida pela onda através da superfície, que matematicamente será escrita por: 17.6 Intensidade e Nível Sonoro
A forma como a intensidade varia com a distância a partir de uma fonte sonora real é normalmente complexa. Em algumas situações, podemos ignorar ecos e supor que a fonte sonora é pontual que emite o som isotropicamente – isto é, com a mesma intensidade em todas as direções.
Supondo que a energia mecânica das ondas sonoras seja conservada enquanto elas se espalham a partir desta fonte e que uma esfera imaginária de raio r seja centrada na fonte, conforme a figura ao lado. Deste modo, a taxa temporal com que a energia é emitida pela fonte, deve ser igual a taxa temporal com que a energia atravessa a esfera.




onde 4πr2 é a área da esfera. Uma centelha elétrica salta ao longo de uma linha reta de comprimento L=10m, emitindo um pulso sonoro que se propaga radialmente para fora a partir da centelha (chamada de fonte linear de som). A potência de emissão é Ps=1,6 x 104 w . (a) Qual é a intensidade I do som quando ele alcança uma distância r=12m a partir da centelha? (b) com que taxa temporal Pd a energia sonora é interceptada por um detector acústico de área Ad=2cm2, dirigido para a centelha e localizado a uma distância r=12m da centelha? Exemplo 3:
O ouvido humano capta sons com amplitudes de deslocamentos que variam de 10-5m (mais forte) até cerca de 10-11m (mais fraco). A razão entre estes dois limites é de 106. E a intensidade sonora varia com o quadrodo da amplitude. Isso significa que os sere humanos podem ouvir uma enorme faixa de intensidades assim utiliza-se a escala logarítmica.
Considere a relação y=log x , com x e y variáveis. Se multiplicarmos x por 10, y aumenta de 1 unidade. Visualizando,




Analogamente, se multiplicarmos por 1012, aumentará de 12 unidades.
Desta forma, em vez de falarmos da intensidade da onda sonora, é muito mais conveniente falarmos de seu nível sonoro β, definido como: Intensidade e Nível Sonoro Roqueiros veteranos sofrem de perda aguda da audição por causa dos altos níveis sonoros que eles suportam durante anos tocando música próximo ao alto-falantes ou ouvindo música em fones de ouvido. Alguns, com Ted Nugent, não conseguem mais escutar por um ouvido lesionado. Outros, como Peter Townshend do The Who, possuem uma sensação de ruído contínuo (tinido). Recentemente, vários roqueiros, como Lars Ulrich da Banda MetalicaI, começaram a usar proteções especiais nos ouvidos durante as apresentações. Se um protetor de ouvido diminui o nível sonoro das ondas por 20dB, qual é a razão entre a intensidade final If e a intensidade Ii inicial ? Quando a onda produzida numa corda ou tubo coincidir com o comprimento da corda ou do tubo, ocorre ressonância e é produzida uma onda estacionária na corda ou tubo.
O padrão de onda estacionária mais simples num tubo com as duas extremidades abertas é mostrado na figura ao lado, chamado de modo fundamental ou primeiro harmônico. Cordas vibrantes (violão, piano, violino);
Membranas timbale, tambor, repique, cuíca);
Colunas de ar (flauta, oboé, tubo de órgão, cornetas);
Blocos de madeira ou barras de aço (marimba, xilofone).
A maioria dos instrumentos envolve mais do que uma parte oscilante (violão= cordas e caixa de ressonância). 17.7 Fontes de Sons Musicais Tubo com as duas extremidades abertas n é chamado nº de harmônico. As freqüências de ressonância deste tubo são: De um modo mais geral, as freqüências de ressonância para um tubo de comprimento L com as duas extremidades abertas correspondem aos comprimentos de onda,  
Timbre:
Diferentes instrumentos produzem diferentes ondas resultantes, mesmo que toquem a mesma nota musical, como por exemplo, a figura ao lado: (a) flauta e (b) oboé.
  O comprimento de um instrumento musical reflete a faixa de freqüências sobre a qual o instrumento é projetado para funcionar. Exemplo 5:
Ruídos de fundo de baixa intensidade em uma sala produzem ondas estacionárias em um tubo de papelão de comprimento L=67,0cm com as duas extremidades abertas. Suponha que a velocidade do som no ar dentro do tubo seja 343m/s. (a) Qual a freqüência do som proveniente do tubo que você ouve? (b) Se você encostar seu ouvido contra uma das extremidades do tubo, que freqüência fundamental você escutará vinda do tubo? Se escutarmos, com uma diferença de alguns minutos, dois sons cujas freqüências são 552 e 564 Hz, possivelmente não conseguiremos distinguir um do outro. No entanto, se os dois sons alcançarem os nossos ouvidos simultaneamente, o que iremos escutar será um som cuja freqüência é de 558 Hz, que é a média das duas freqüências. Escutaremos também uma variação na intensidade deste som – um batimento - lento e periódico que se repete a uma freqüência de 12Hz, ou seja, a diferença entre as duas freqüência originais. 17.8 Batimentos Exemplo 6:
A maioria dos pássaros vocaliza usando apenas um dos dois lados dos seus órgãos vocais, chamado siringe. Os pingüins imperadores, entretanto, vocalizam usando os dois lados simultaneamente. Cada lado produz ondas acústicas estacionárias na garganta e na boca do pássaro, como em um tubo com as duas extremidades abertas. Suponha que a freqüência do primeiro harmônico produzido pela extremidade A seja f1A=432Hz e que a freqüência do primeiro harmônico produzido pela extremidade B seja f1B=371Hz . Qual é a freqüência de batimento entre estas duas freqüências de primeiro harmônico e entre as duas frequências de segundo harmônico? v é a velocidade do som no ar;
vD é a velocidade do detector em relação ao ar;
vS é a velocidade da fonte em relação ao ar. Efeito em que se observam variações de freqüência quando a fonte e/ou o detector estão em movimento. Ocorre também em ondas eletromagnéticas. Neste estudo, consideraremos apenas as ondas sonoras e tomaremos como sistema de referência a massa de ar através da qual as ondas se propagam.
Se o detector ou a fonte estiver se movendo, ou se ambos estiverem em movimento, a freqüência emitida f e a freqüência detectada f’ são relacionadas por 17.9 Efeito Doppler Os sinais –
Se o detector se move em direção à fonte, o sinal é positivo no numerador (aumento na freqüência);
Se o detector se afasta da fonte, o sinal é negativo no numerador (redução na freqüência);
Se o detector estiver estacionário vD=0;
Se a fonte se mover em direção ao detector, o sinal é negativo no denominador (aumento na freqüência);
Se a fonte se afasta do detector, o sinal é positivo no denominador (redução na freqüência);
Se a fonte estiver estacionária vs=0.

Resumindo:
Aproximação- significa aumento de freqüência;
Afastamento- significa decréscimo na freqüência; O Sinal da velocidade do observador e da fonte é determinado colocando-se um eixo positivo orientado do observador para a fonte. Resumo: Exemplo 7:
Um foguete se move com uma velocidade de 242m/s (através do ar em repouso) diretamente em direção a um poste estacionário enquanto emite ondas sonoras de freqüência f=1250Hz. (a) Qual a freqüência medida por um detector preso ao poste? (b) Parte do som que atinge o poste é refletida de volta ao foguete como um eco. Qual a freqüência detectada no foguete para esse eco? Exemplo 8 - 51) Uma ambulância com uma sirene emitindo um som de freqüência 1600Hz alcança e ultrapassa um ciclista pedalando uma bicicleta a 2,44m/s. Após ser ultrapassado, o ciclista escuta uma freqüência de 1590Hz. Qual é a velocidade da ambulância? Exemplo 4: Tubo com uma das extremidades abertas Para um tubo com uma das extremidades abertas e a outra fechada teremos Variação da Intensidade com a Distância A Escala de Decibéis
Full transcript