Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Взаимодействия

No description
by

Ирина Голубева

on 1 December 2012

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Взаимодействия

Фундаментальные
взаимодействия Очевидно, что вопрос об элементарности физических объектов - это в первую очередь вопрос экспериментальный. Например, экспериментально установлено, что молекулы, атомы, атомные ядра имеют внутреннюю структуру, указывающую на наличие составных частей. Поэтому их нельзя считать элементарными частицами. Сравнительно недавно открыто, что такие частицы, как мезоны и барионы, также обладают внутренней структурой и, следовательно, не являются элементарными. В то же время у электрона внутренняя структура никогда не наблюдалась, и, значит, его можно отнести к элементарным частицам. Другим примером элементарной частицы является квант света - фотон. Гравитационное взаимодействие Электромагнетизм Сильное взаимодействие Таким образом, в фундаментальных физических взаимодействи­ях четко прослеживается различие сил дальнодействующих и близко­действующих. С одной стороны, взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой - малого радиуса (сильное и слабое). Мир физических процессов разверты­вается в границах этих двух полярностей и является воплощением единства предельно малого и предельно большого – близкодействия в микромире и дальнодействия во всей Вселенной. Слабое взаимодействие Современные экспериментальные данные свидетельствуют, что существует только четыре качественно различных вида взаимодействий, в которых участвуют элементарные частицы. Эти взаимодействия называются фундаментальными, то есть самыми основными, исходными, первичными. Если принять во внимание все многообразие свойств окружающего нас Мира, то кажется совершенно удивительным, что в Природе есть только четыре фундаментальных взаимодействия, ответственных за все явления Природы.

Помимо качественных различий, фундаментальные взаимодействия отличаются в количественном отношении по силе воздействия, которая характеризуется термином интенсивность. По мере увеличения интенсивности фундаментальные взаимодействия располагаются в следующем порядке: гравитационное, слабое, электромагнитное и сильное. Каждое из этих взаимодействий характеризуется соответствующим параметром, называемым константой связи, численное значение которого определяет интенсивность взаимодействия. В современной физике высоких энергий все большее значение приобретает идея объединения фундаментальных взаимодействий. Согласно идеям объединения, в Природе существует только одно единое фундаментальное взаимодействие, проявляющее себя в конкретных ситуациях как гравитационное, или как слабое, или как электромагнитное, или как сильное, или как их некоторая комбинация. Успешной реализацией идей объединения послужило создание ставшей уже стандартной объединенной теории электромагнитных и слабых взаимодействий. Идет работа по развитию единой теории электромагнитных, слабых и сильных взаимодействий, получившей название теории великого объединения. Предпринимаются попытки найти принцип объединения всех четырех фундаментальных взаимодействий. Мы последовательно рассмотрим основные проявления фундаментальных взаимодействий. Гравитация первым из четырех фундаментальных взаимодействий стала предметом научного исследования. Созданная в ХVII в. ньютоновская теория гравитации (закон всемирного тяготения) позволила впервые осознать истинную роль гравитации как силы природы.

Это взаимодействие носит универсальный характер, в нем участвуют все виды материи, все объекты природы, все элементарные частицы! Гравитация определяет движение планет в звездных системах, играет важную роль в процессах, протекающих в звездах, управляет эволюцией Вселенной, в земных условиях проявляет себя как сила взаимного притяжения. Конечно, мы перечислили только небольшое число примеров из огромного списка эффектов гравитации.

Согласно общей теории относительности, гравитация связана с кривизной пространства-времени и описывается в терминах так называемой римановой геометрии. В настоящее время все экспериментальные и наблюдательные данные о гравитации укладываются в рамки общей теории относительности. Однако данные о сильных гравитационных полях по существу отсутствуют, поэтому экспериментальные аспекты этой теории содержат много вопросов. Гравитация обладает рядом особенностей, отличающих ее от дру­гих фундаментальных взаимодействий. Наиболее удивительной осо­бенностью гравитации является ее малая интенcивность. Гравитаци­онное взаимодействие в 1039 раз меньше силы взаимодействия элект­рических зарядов. Как может такое слабое взаимодействие оказать­ся господствующей силой во Вселенной?

Все дело во второй удивительной черте гравитации - ее универ­сальности. Ничто во Вселенной не может избежать гравитации. Каждая частица испытывает на себе действие гравитации и сама является источником гравитации, вызывает гравитационное притяжение. Гравитация возрастает по мере образования все больших скоплений вещества. И хотя притяжение одного атома пренебрежимо мало, но результирующая сила притяжения со стороны всех атомов может быть значительной. Это проявляется и в повседневной жизни: мы ощущаем гравитацию потому, что все атомы Земли сообща притяги­вают нас. Зато в микромире роль гравитации ничтожна. Никакие квантовые эффекты в гравитации пока не доступны наблюдению.

Если бы размеры атома водорода определялись гравитацией, а не взаимодей­ствием между электрическими зарядами, то радиус низшей (самой близкой к ядру) орбиты электрона превосходил бы радиус доступной наблюдению части Вселен­ной.

Кроме того, гравитация - дальнодействующая сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. В астрономическом масштабе гравитационное взаимодействие, как прави­ло, играет главную роль. Благодаря дальнодействию гравитация не позволяет Вселенной развалиться на части: она удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике.

Сила гравитации, действующая между частицами, всегда пред­ставляет собой силу притяжения: она стремится сблизить частицы. Гравитационное отталкивание еще никогда не наблюдалось. По величине электрические силы намного превосходят гравитационные, поэтому в отличие от слабого гравитационного взаимодействия электрические силы, действующие между телами обычных размеров, можно легко наблюдать. Электромагнетизм известен людям с незапамятных времен (полярные сияния, вспышки молнии и др.).

В течение долгого времени электрические и магнитные процессы изучались независимо друг от друга. Решающий шаг в познании электромагнетизма сделал в середине XIX в. Дж.К Максвелл, объединивший электричество и магнетизм в единой теории электромагнетизма - первой единой теории поля.

Существование электрона (единицы электрического заряда) было твердо установлено в 90-е гг. XIX в. Но не все материальные частицы являются носителями электрического заряда. Электрически нейтральны, например, фотон и нейтрино. В этом электричество и отличается от гравитации. Все матеpиальные частицы создают гравитационное поле, тогда как с электромагнитным полем связаны только заряженные частицы.

Долгое время загадкой была и природа магнетизма. Как и электрические заряды, одноименные магнитные полюсы отталкиваются, а разноименные - притягиваются. В отличие от электрических зарядов магнитные полюсы встречаются не по отдельности, а только парами - северный полюс и южный. Хорошо известно, что в обычном магнитном стержне один конец действует как северный полюс, а другой - как южный. Еще с древнейших времен известны попытки получить посредством разделения магнита лишь один изолированный магнитный полюс - монополь. Но все они заканчивались неудачей: на месте разреза возникали два новых магнита, каждый из которых имел и северный, и южный полюсы. Может быть, существование изолированных магнитных полюсов в природе исключено? Определенного ответа на этот вопрос пока не существует. Некоторые современные теории допускают возможность существования монополя. Электрическая и магнитная силы (как и гравитация) являются дальнодействующими, их действие ощутимо на больших расстояни­ях от источника. Электромагнитное взаимодействие проявляется на всех уровнях материи - в мегамире, макромире и микромире. Как и гравитация, оно подчиняется закону обратных квадратов.

Электромагнитное поле Земли простирается далеко в космичес­кое пространство; мощное поле Солнца заполняет всю Солнечную систему; существуют и галактические электромагнитные поля. Электромагнитное взаимодействие определяет также структуру ато­мов и отвечает за подавляющее большинство физических и химичес­ких явлений и процессов (за исключением ядерных). К нему сводятся все обычные силы: силы упругости, трения, поверхностного натяже­ния, им определяются агрегатные состояния вещества, оптические явления и др. К выявлению существования слабого взаимодействия физика про­двигалась медленно. Слабое взаимодействие ответственно за распады частиц; и поэтому с его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада.

У бета-распада обнаружилась в высшей степени странная особенность. Исследования приводили к выводу, что в этом распаде как будто нарушается один из фундаментальных законов физики – закон сохранения энергии. Казалось, что часть энергии куда-то исчезала. Чтобы «спасти» закон сохранения энергии, В. Паули предположил, что при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она - нейтральная и обладает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку «нейтрино».

Но предсказание нейтрино - это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, но здесь ос­тавалось много загадочного. Дело в том, что электроны и нейтрино испускались нестабильными ядрами. Но было неопровержимо доказано, что внутри ядер нет таких частиц. Об их возникновении было высказано предположение, что электроны и нейтрино не существуют в ядре в «готовом виде», а каким-то образом образуются из энергии радиоактивного ядра. Дальнейшие исследования показали, что вхо­дящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляется три новые. Анализ приводил к выводу, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой. Исследования показали, что этой силе соответствует некоторое слабое взаимодействие.

Слабое взаимодействие по величине значительно меньше всех взаимодействий, кроме гравитационного, и в системах, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействий. Кроме того, слабое взаимодействие распространяется на очень незначительных расстояниях. Радиус слабого взаимодействия очень мал. Слабое взаимодействие прекращается на расстоянии, большем 10-16 см от источника, и потому оно не может влиять на макроскопические объекты, а ограничивается микроми­ром, субатомными частицами. Когда началось лавинообразное открытие множества нестабильных субъядерных частиц, то обнаружилось, что большинство из них участвуют в слабом взаимодействии. Последнее в ряду фундаментальных взаимодействий - сильное взаимодействие, которое является источником огромной энергии. Наи­более характерный пример энергии, высвобождаемой сильным взаимодействием, - Солнце. В недрах Солнца и звезд непрерывно про­текают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции.

К представлению о существовании сильного взаимодействия физика шла в ходе изучения структуры атомного ядра. Какая-то сила должна удерживать положительно заряженные протоны в ядре, не позволяя им разлетаться под действием электростатического отталкивания. Гравитация слишком слаба и не может это обеспечить; очевидно, необходимо какое-то взаимодействие, причем, более сильное, чем электромагнитное. Впоследствии оно было обнаружено. Выяснилось, что хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Как и в случае слабого взаимодействия, радиус действия новой силы оказался очень малым: сильное взаимодействие проявляется на расстоянии, определяемом размерами ядра, т.е. примерно 10-13 см. Кроме того, выяснилось, что сильное взаимодействие испытывают не все частицы. Так, его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны неподвластны ему. В сильном взаимодействии участвуют обычно только тяжелые частицы. Оно ответственно за образование ядер и многие взаимодействия элементарных частиц.

Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился только в начале 60-х гг., когда была предложена кварковая модель. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из кварков. Спасибо за внимание)
Full transcript