**Reflection**

Translation

example #1

Translation

A rotation is a

"turn"

which moves a shape around a fixed point.

**Transformations**

**Rotation**

where each point in a shape appears at an equal distance on the opposite side of a given line.

is a "slide" the shape is exactly the same just in a different location

**Dilation**

is a shape either enlarged or reduced by a given factor around a center point

A(-3,3.5)

B(-1.5,1)

C(-4.5,1)

A

C

B

A'(0,1)

B'(1.5,-1.5)

C'(-1.5,-1.5)

triangle A,B,C slid

over 3 and down 2.5

to meet triangle A',B',C'

**Translation**

example #2

A(4.5,3)

B(4.5,5)

C(2.5,5)

D(2.5,3)

A'(-1,0)

B'(-1,2)

C'(-3,2)

D'(-3,0)

the triangle A,B,C slid 5.5 left and 3 down

Translation

example #3

A

B

C

D

A(2,5)

B(5,5)

C(2,0)

D(5,0)

A'(-3,6)

B'(0,6)

C'(-3,1)

D'(0,1)

5 left 1 up

Translation

instructions

step 1: find your current coordinates of the figure

step 2:see how many spaces you have to move

step 3:find your new coordinates and connect the dots

Rotation

example #1

Rotation

instructions

90 degrees clockwise

*(-Y,X)

A(-3,-2)

B(-2,-4)

C(-4,-4)

A'(2,-3)

B'(4,-2)

C'(4,-4)

A

B

C

step one:find the location of each vertex

step two:write down each location and label them (a,b,c...)

step three:switch the two numbers and make the first number its opposite integer

step four:mark your new coordinates on the graph and connect the dots

Rotation 180 degrees

example 1

Reflection

step one: find coordinates

step two:see how many spaces away you are from the axis your reflecting over

step 3: go to to the opposite side and take the spaces you counted on the other side and count the opposite way

Dilation

step one:find out your current coordinates

step two:multiply each coordinate by your scale factor

step three:place each of your coordinates on a graph , connect each one

A

B

C

A(-1,4)

B(-2,1)

C(-3,4)

A'(-1-4)

B'(-2,-1)

C'(-3,-4)

Rotation

example #3

A(0,-1)

B(0,-3)

C(4,-2)

A'(0,1)

B'(0,3)

C'(4,2)

reflection

A(2,3)

B(0,0)

C(4,0)

A'(-2,3)

B'(0,0)

C'(-4,0)

Reflection

Example two

A(2,0)

B(0,-3)

C(3,-3)

A'(-2,0)

B'(0,-3)

C'(-3,-3)

Reflection

example #3

A(2,2)

B(1,0)

C(3,0)

A'(2,-2)

B'(1,0)

C'(3,0)

Dilation

scale factor .5

A(0,0)

B(3,4)

C(5,0)

A'(0,0)

B'(1.5,2)

C'(2.5,0)

dilation #2

A(2,3)A'(1,1.5)

B(0,0)B'(0,0)

C(4,0)C'(2,0)

scale factor .5

Dilation

A(0,1)

B(2,4)

C(4,1)

A'(0,.5)

B'(1,2)

C'(2,.5)