Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

bobina tesla y funcionamiento

bobina tesla
by

erick saavedra

on 5 October 2012

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of bobina tesla y funcionamiento

es un tipo de transformador resonante, llamado así en honor a su inventor, Nikola Tesla, el cual la patentó en 1891 a la edad de 35 años. Las bobinas de Tesla están compuestas por una serie de circuitos eléctricos resonantes acoplados. En realidad Nikola Tesla experimentó con una gran variedad de bobinas y configuraciones, así que es difícil describir un modo específico de construcción que satisfaga a aquellos que hablan sobre bobinas de Tesla. Las primeras bobinas y las bobinas posteriores varían en configuraciones y montajes. Generalmente las bobinas de Tesla crean descargas eléctricas de alcances del orden de metros, lo que las hace muy espectaculares. BOBINA TESLA Y SU FUNCIONAMIENTO Primeras bobinas
El American Electrician da una descripción magnética o de su misma magnitud, de una de las primeras bobinas Tesla, donde un vaso acumulador de cristal de 15 cm por 20 cm es enrollado con entre 60 y 80 vueltas de alambre del mayor porcentaje cobre No. 18 B & S. Dentro de éste se sitúa una bobina primaria consistente en entre 8 y 10 vueltas de cable AWG No. 6 B & S, y el conjunto se sumerge en un vaso que contiene aceite de linaza o aceite mineralda.1 Transmisión
Una bobina Tesla grande de diseño actual puede operar con niveles de potencia con picos muy altos, hasta muchos megavatios (un millón de vatios). Debe por tanto ser ajustada y operada cuidadosamente, no sólo por eficiencia y economía, sino también por seguridad. Si, debido a un ajuste inapropiado, el punto de máximo voltaje ocurre por debajo de la terminal, a lo largo de la bobina secundaria, una chispa de descarga puede dañar o destruir el cable de la bobina, sus soportes o incluso objetos cercanos.
Tesla experimentó con estas, y muchos otras, configuraciones de circuitos (ver derecha). El arrollamiento primario, el spark gap y el depósito condensador están conectados en serie. En cada circuito, el transformador de la alimentación AC carga el depósito condensador hasta que su voltaje es suficiente para producir la ruptura del spark gap. El gap se dispara, permitiendo al depósito condensador cargado descargarse en la bobina primaria. Una vez el gap se dispara, el comportamiento eléctrico de cada circuito es idéntico. Los experimentos han mostrado que ninguno de los circuitos ofrece ninguna ventaja de rendimiento sobre el otro. Seguridad y precauciones
En el ajuste de la bobina la frecuencia de resonancia de la bobina primaria se ajusta al mismo valor de la bobina secundaria. Es recomendable para comenzar usar oscilaciones de baja potencia, y a partir de estas incrementar la potencia hasta el momento en el que el aparato esté bajo control. Mientras se ajuste, se suele añadir una pequeña proyección (llamada "breakout bump") al terminal superior para estimular descargas de corona y de chispas (también llamadas "streamers") en el aire circundante. La bobina puede entonces ajustarse para conseguir las descargas más largas a una cierta potencia dada, correspondiendo a la coincidencia de frecuencias entre la bobina primaria y la secundaria. La "carga" capacitiva de estos streamers tiende a bajar la frecuencia resonante de una bobina Tesla funcionando a potencia máxima. Por distintas razones técnicas, resulta efectivo elegir a los terminales superiores de la bobina con forma toroidal.
Ya que las bobinas Tesla pueden producir corrientes o descargas de muy alta frecuencia y voltaje, son útiles para diferentes propósitos entre los que se incluyen demostraciones prácticas en clases, efectos especiales para teatro y cine, y pruebas de seguridad de diferentes tecnologías. En su funcionamiento más común, se producirán largas descargas de alto voltaje en todas direcciones alrededor del toroide, que resultan muy espectaculares. Descargas aéreas
Al generar las descargas, se produce una transferencia de energía eléctrica entre la bobina secundaria y el toroide y el aire circundante, transferencia que se produce en forma de carga eléctrica, calor, luz y sonido. Las corrientes eléctricas que fluyen a través de estas descargas se deben a la rápida oscilación de cargas desde el terminal superior al aire circundante. El proceso es similar a cargar o descargar un condensador. La corriente que surge de aumentar la carga en un condensador se denomina corriente de desplazamiento. Al producirse estas corrientes de desplazamiento, se forman pulsos de carga eléctrica que se transfieren rápidamente entre el toroide de alto voltaje y las regiones de aire cercanas, llamadas regiones de carga espacial. Estas regiones de carga juegan un papel fundamental en la aparición y situación de las descargas de las bobinas Tesla. Cuando el explosor se dispara, el condensador cargado se descarga en el primer arrollamiento, lo que hace que el circuito primario empiece a oscilar. La corriente oscilante crea un campo magnético que se acopla con el segundo arrollamiento, transfiriendo energía a la parte secundaria del transformador y produciendo que este oscile con la capacitancia toroidal. La transferencia de energía ocurre durante varios ciclos, y la mayor parte de la energía que originalmente se encontraba en la parte primaria, pasa a la secundaria. Cuanto mayor es el acoplamiento magnético entre los arrollamientos, menor será el tiempo requerido para completar la transferencia de energía. Según la energía crece en el circuito oscilante secundario, la amplitud del voltaje RF del toroide crece rápidamente, y en el aire circundante al toroide se produce una ruptura del dieléctrico, formando una descarga de corona. Según se sigue incrementando la energía (y el voltaje exterior) de la segunda bobina, se producen pulsos mayores de corriente de desplazamiento que ionizan y calientan el aire. Esto forma una “raíz” de plasma caliente muy conductora, llamada chispa directora que se proyecta hacia el exterior del toroide. El plasma en esta “conductora” está considerablemente más caliente que una descarga de corona, y es considerablemente más conductora. De hecho, tiene propiedades similares a un arco eléctrico. La conductora se bifurca en miles de descargas mucho más finas, similares a cabellos, llamadas streamers.
Estos streamers son como una “niebla” azulada al final de las conductoras más luminosas, y son estos los que transfieren la carga entre el toroide y las regiones espaciales de carga circundantes. Las corrientes de desplazamiento de incontables streamers alimentan a la conductora, ayudando a mantenerla caliente y eléctricamente conductora. En una bobina Tesla con explosor, el proceso de transferencia de energía entre los circuitos primarios y secundarios ocurre repetidamente a unas tasas típicas de transferencia de 50/500 veces por segundo, y los canales conductores previamente formados no tienen oportunidad de enfriarse totalmente entre pulsos. De esta forma, en pulsos sucesivos, las nuevas descargas pueden construirse en los rastros calientes dejados por sus predecesoras. Esto produce un crecimiento consecutivo de las conductoras de un pulso al siguiente, alargando la descarga en cada pulso sucesivo.
La repetición de los pulsos produce que las descargas crezcan hasta que la energía media que está disponible en la bobina Tesla durante cada pulso se equilibre con la energía media perdida en las descargas (mayormente por calor). En este punto se alcanza el equilibrio dinámico, y las descargas alcanzan su máxima longitud para esa potencia exterior de la bobina. Esta única combinación de un alto voltaje creciente de radiofrecuencia y una repetición de pulsos parece ajustarse de forma ideal para crear descargas largas y bifurcadas que son considerablemente mayores que las que se podrían esperar simplemente considerando el voltaje exterior. Más de 100 años después del uso de las primeras bobinas Tesla, hay muchos aspectos de las descargas y de los procesos de transferencia de energía que todavía no se comprenden en su totalidad.
Full transcript