Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

A Bioquímica da Vida

No description
by

Otávia Núbia

on 26 March 2015

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of A Bioquímica da Vida

A Bioquímica da Vida
O Carbono e a Vida
Entre os relativamente poucos elementos químicos
essenciais à vida, alguns são muito mais necessários do que os outros. O elemento mais comum nos seres vivos é o Carbono (C).


Molécula de metano formada por um átomo de carbono (centro)
Principais Elementos
Químicos dos Seres Vivos
Representação dos Elementos Químicos
Essenciais ao Corpo


Os Carboidratos
Também chamados de glicídios, glucídios, hidratos de carbono ou açúcares. São formados fundamentalmente por moléculas de carbono (C), hidrogênio (H) e oxigênio (O), por isso recém a denominação de hidratos de carbono.


Estão relacionados com o fornecimento de energia imediata para a célula e estão presentes em diversos tipos de alimentos. Os carboidratos são os principais produtos da fotossíntese.
Uma classificação simplificada dos carboidratos, ou glicídios, consiste em dividi-los e três categorias principais: monossacarídeos, oligossacarídeos e polissacarídeos.
Monossacarídeos: os mais simples

Os monossacarídeos são carboidratos simples, de fórmula molecular (CH2O)
n
, onde
n
é no mínimo 3 e no máximo 8. São os verdadeiros açucares, solúveis em água e, de modo geral, de sabor adocicado. Os de menor número de átomos de carbono são as trioses (contêm três átomos de carbono). Os biologicamente mais conhecidos são os formados por cinco átomos de carbonos (chamados de pentoses) e os formados por seis átomos de carbono (hexoses).

Oligossacarídeos: nem tão simples, nem tão complexos

Oligossacarídeos são açucares, formados pela união de dois a seis monossacarídeos, geralmente hexoses. O prefixo oligo deriva do grego e quer dizer pouco. Os oligossacarídeos mais importantes são os dissacarídeos.
Polissacarídeos: os mais complexos

Como o nome sugere (poli é um termo derivado do grego e quer dizer muitos), os polissacarídeos são compostos macromoleculares, formadas pela união de centenas de monossacarídeos. Os três polissacarídeos mais conhecidos dos seres vivos são amido, glicogênio e celulose e a quitina.
Ao contrário da glicose, os polissacarídeos dela derivados não possuem sabor doce, nem são solúveis em água.
As Proteínas
São compostos orgânicos relacionados ao metabolismo de construção. Durante as fases de crescimento e desenvolvimento do indivíduo, há um aumento extraordinário do número de suas células passam a exercer funções especializadas, gerando tecidos e órgãos.
Certos hormônios, substâncias reguladoras das atividades do nosso organismo, também são protéicos. É o caso da insulina, que controla a taxa de glicose sanguínea.
As proteínas são macromoléculas formadas por uma sucessão de moléculas menores conhecidas como aminoácidos. A maioria dos seres vivos, incluindo o homem, utiliza somente cerca de vinte tipos diferentes de aminoácidos, para a construção de suas proteínas. Com eles, cada ser vivo é capaz de produzir centenas de proteínas diferentes e de tamanho variável.
Cada aminoácido é diferente de outro. No entanto, todos possuem alguns componentes comuns. Todo aminoácido possui um átomo de carbono, ao qual estão ligados uma carboxila, uma amina e um hidrogênio. A quarta ligação é a porção variável, representada por R, e pode ser ocupada por um hidrogênio, ou por um metil ou por outro radical.
Ligação Peptídica: unindo aminoácidos
Do mesmo modo que em um trem cada vagão está engatado ao seguinte, em uma proteína cada aminoácido está ligado a outro por uma ligação peptídica. Por meio dessa ligação, o grupo amina de um aminoácido une-se ao grupo carboxila do outro, havendo a liberação de uma molécula de água. Os dois aminoácidos unidos formam um dipeptídio.

A ligação de um terceiro aminoácido ao dipeptídeo origina um tripeptídeo que então, contém duas ligações peptídicas. Se um quarto aminoácido se ligar aos três anteriores, teremos um tetrapeptídeo, com três ligações peptídicas. Com o aumento do número de aminoácidos na cadeia, forma-se um polipetídio, denominação utilizada até o número de 70 aminoácidos. A partir desse número considera-se que o composto formado é uma proteína.

Estrutura das proteínas
Uma molécula de proteína tem, a grosso modo, formato de um colar de contas. O fio fundamental da proteína, formado como uma seqüência de aminoácidos, constitui a chamada
estrutura primária
da proteína.

A
estrutura secundária
geralmente é resultante de ligações de hidrogênio que ocorrem entre o hidrogênio do grupo – NH e o oxigenio do grupo C ═ O. Assim, formam-se estruturas como as mostradas abaixo, parecidas com uma mola (um exemplo ocorre com a queratina de nossos cabelos).


Quando as estruturas secundárias das proteínas se dobram sobre si mesmas, elas dão origem a uma disposição espacial denominada de
estrutura terciária
. Ela ocorre geralmente como resultado de ligações de enxofre, conhecidas como pontes de dissulfetos. Mas, podem ocorrer outras ligações espaciais também, como as realizadas por átomos de metais.A seguir, temos a estrutura terciária da hemoglobina:


A
estrutura quaternária
é a união de várias estruturas terciárias que assumem formas espaciais bem definidas. Por exemplo, abaixo temos um modelo da estrutura quaternária da hemoglobina humana, a proteína nos glóbulos vermelhos que transporta oxigênio pelo organismo.
Enzimas

As enzimas são substâncias do grupo das proteínas e atuam como catalisadores de reações químicas.
Catalisador é uma substância que acelera a velocidade de ocorrência de uma certa reação química.
A parte protéica é a apoenzima e a não protéica é o co-fator. Quando o co-fator é uma molécula orgânica, é chamado de coenzima. O mecanismo de atuação da enzima se inicia quando ela se liga ao reagente, mais propriamente conhecido como substrato. É formado um complexo enzima-substrato, instável, que logo se desfaz, liberando os produtos da reação a enzima, que permanece intacta embora tenha participado da reação.
O mecanismo “chave-fechadura”
Na catálise de uma reação química, as enzimas interagem com os substratos, formando com eles, temporariamente, o chamado complexo enzima-substrato. Na formação das estruturas secundária e terciária de uma enzima (não esqueça que as enzimas são proteínas), acabam surgindo certos locais na molécula que servirão de encaixe para o alojamento de um ou mais substratos, do mesmo modo que uma chave se aloja na fechadura.
Fatores que afetam a atividade das enzimas
Temperatura e PH
Lipídios
Os lipídios são todos aqueles compostos que possuem uma estrutura molecular bem variada, o que significa que eles não possuem uma função orgânica única, e sim, que apresentam diversas atividades diferentes de acordo com especialidade de cada um. Sua principal característica é o que definimos como insolubilidade em solventes polares e a solubilidade em solventes orgânicos, eles possuem uma natureza hidrofóbica.
As duas substâncias mais conhecidas dessa categoria são gorduras e óleos.
Além desses dois tipos fundamentais de lipídios, existem outros que devem ser lembrados pelas funções que exercem nos seres vivos. São as ceras, os fosfolipídios, os esteróides, as prostaglandinas e os terpenos.
Óleos e gorduras
– pertencem à categoria dos ésteres e são formados por meio da reação de um álcool, chamado glicerol, com ácidos orgânicos de cadeia longa, conhecidos como ácidos graxos. A exemplo do que ocorre com os carboidratos, a reação do glicerol com os ácidos graxos é de condensação, havendo liberação de moléculas de água.



Fosfolipídios

– as membranas biológicas são constituídas por fosfolipídios. São moléculas anfipáticas, o que significa que elas possuem uma região polar, que chamamos de cabeça hidrofílica, tendo afinidade por água, e outra região apolar, chamada de calda hidrofóbica, que é responsável por repelir a água.
Esteróides
– alguns esteróides são hormônios (por exemplo, a testosterona, o hormônio sexual masculino) e outros são vitaminas (por exemplo, a vitamina D). O colesterol, que para os químicos é um álcool complexo, é outro exemplo de esteróide: é importante componente de membranas celulares, embora hoje seja temido como causador de obstrução (entupimento) em artérias do coração.
O colesterol não “anda” sozinho no sangue. Ele se liga a uma proteína e, dessa forma, é transportado. Há dois tipos principais de combinações: o HDL, que é o bom colesterol e o LDL que é o mau colesterol. Essas siglas derivam do inglês e significam lipoproteína de alta densidade (HDL – High Density Lipoprotein) e lipoproteína de baixa densidade (LDL – Low Density Lipoprotein)
O LDL transporta colesterol para diversos tecidos e também para as artérias, onde é depositado, formando placas que dificultam a circulação do sangue, daí a denominação mau colesterol. Já o HDL faz exatamente o contrário, isto é, transporta colesterol das artérias principalmente para o fígado, onde ele é inativado e excretado como sais biliares, justificando o termo bom colesterol.
Full transcript