Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Реальный газ

No description
by

Alexey Bagretsov

on 18 November 2013

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Реальный газ

Реальный газ
Реальные газы
силы
Что такое реальный газ?
Как известно, уравнение состояния устанавливает функциональную связь между давлением Р, объемом V, температурой T и числом молей газа в состоянии равновесия. Эта связь может выражаться не только в форме уравнения, но также графически или в виде таблиц, которые часто используются, особенно для практических целей. Самым простым и известным уравнением состояния является уравнение состояния идеального газа:

Реальные газы описываются уравнением состояния идеального газа только приближенно, и отклонения от идеального поведения становятся заметными при высоких давлениях и низких температурах, особенно когда газ близок к конденсации. Так, для газов с низкой температурой сжижения (He, H2, Ne и даже N2, O2, Ar, CO, CH4) при давлениях до 50 атм. отклонения не превышают 5 %, а при давлениях до 10 атм. – 2 %. Легко конденсирующиеся газы (CO2, SO2, Cl2, CH3Cl) уже при 1 атм. обнаруживают отклонения до 3 %.



Предпринималось много попыток для учета отклонений свойств реальных газов от свойств идеального газа путем введения различных поправок в уравнение состояния идеального газа
Первая поправка в уравнении состояния идеального газа рассматривает собственный объем, занимаемый молекулами реального газа. В уравнении Дюпре (1864)

постоянная b учитывает собственный мольный объем молекул,
– число молей газа.
При понижении температуры межмолекулярное взаимодействие в реальных газах приводит к конденсации (образование жидкости). Межмолекулярное притяжение эквивалентно существованию в газе некоторого внутреннего давления Р' (иногда его называют статическим давлением). Изначально величина Р' была учтена в общей форме в уравнении Гирна (1865):
Наибольшее распространение вследствие простоты и физической наглядности получило уравнение голландский физика Ван-дер-Ваальса. В 1873 г. он дал функциональную интерпретацию внутреннего давления. Согласно модели Ван-дер-Ваальса, силы притяжения между молекулами (силы Ван–дер–Ваальса) обратно пропорциональны шестой степени расстояния между ними, или второй степени объема, занимаемого газом. Считается также, что силы притяжения суммируются с внешним давлением. С учетом этих соображений уравнение состояния идеального газа преобразуется в уравнение Ван-дер-Ваальса:
Ян-Дидерик Ван-дер-Ваальс
(1837–1923) – голландский физик. Его докторская диссертация, посвященная непрерывности газообразного и жидкого состояний, получила горячее одобрение со стороны Джеймса-Клерка Максвелла. В 1910 г. Ван-дер-Ваальс получил Нобелевскую премию по физике «за работу над уравнением состояния газов и жидкостей». Помимо Нобелевской премии, Ван-дер-Ваальс получил почетную докторскую степень Кембриджского университета. Кроме того, он являлся членом Нидерландской королевской академии наук и искусств и был избран иностранным членом Французской академии наук, Берлинской королевской академии наук, Московского императорского общества естествоиспытателей, Британского химического общества и Американской национальной академии наук.
– газы, свойства которых зависят от взаимодействия молекул. В обычных условиях, когда средняя потенциальная энергия межмолекулярного взаимодействия много меньше средней кинетической энергии молекул, свойства реальных и идеальных газов отличаются незначительно. Поведение этих газов резко различно при высоких давлениях и низких температурах, когда начинают проявляться квантовые эффекты.
Ван–дер–Ваальс, объясняя свойства реальных газов и жидкостей, предположил, что на малых расстояниях между молекулами действуют силы отталкивания, которые с увеличением расстояния сменяются силами притяжения. Межмолекулярные взаимодействия имеют электрическую природу и складываются из сил притяжения (ориентационных, индукционных) и сил отталкивания.
Ориентационные силы действуют между полярными молекулами – молекулами, обладающими дипольными или квадрупольными моментами. Сила притяжения между молекулами зависит от их взаимной ориентации, поэтому они и называются ориентационными. Хаотическое тепловое движение непрерывно меняет ориентацию полярных молекул, но среднее по всем ориентациям значение силы не равно нулю.
Среднее значение потенциальной энергии ориентационного межмолекулярного взаимодействия равно Uор(r) ~ p1 p2 r-6, где p1,p2 – дипольные моменты взаимодействующих молекул. Сила ориентационного взаимодействия Fор = – dU/dr ~ r-7 убывает с расстоянием значительно быстрее, чем кулоновская сила взаимодействия заряженных частиц Fкул ~ r– 2.

Индукционные (поляризационные) силы действуют между полярной и неполярной молекулами, а также между полярными молекулами. Полярная молекула создает электрическое поле, которое поляризует другую молекулу – индуцирует в ней дипольный момент. Потенциальная энергия межмолекулярного взаимодействия в этом случае пропорциональна дипольному моменту p1 полярной молекулы и поляризуемости а2 второй молекулы: Uинд ~ p1а2 r– 6. Индукционные силы убывают по тому же закону, что и ориентационные Fинд ~ r–7.
Дисперсионное молекулярное взаимодействие возникает благодаря виртуальному нарушению электронейтральности молекулы в отдельные моменты времени. Мгновенный диполь поляризует соседние молекулы – возникает взаимодействие мгновенных диполей. Данное взаимодействие называется дисперсионным, его энергия определяется поляризуемостью молекул а1, а2: U(r) ~ а1а2 r–6, а сила убывает по закону Fдисп ~ r–7. Обычно дисперсионные силы превосходят ориентационные и индукционные. Например, при взаимодействии таких полярных молекул, как СО, НI, HBr и др., Fдисп в десятки и сотни раз превосходят все остальные.
Отметим, что все три силы и энергии одинаковым образом убывают с расстоянием:

F = Fор + Fинд + Fдисп ~ r–7,

U = Uор + Uинд + Uдисп ~ r–6.
Силы отталкивания действуют между молекулами на очень малых расстояниях, когда происходит взаимодействие электронных оболочек атомов, входящих в состав молекул. Принцип Паули запрещает проникновение заполненных электронных оболочек друг в друга. Возникающие при этом силы отталкивания зависят в большей степени, чем силы притяжения от индивидуальных особенностей молекул. К хорошему согласию с данными экспериментов приводит допущение, что потенциальная энергия сил отталкивания возрастает с уменьшением расстояния по закону Uот(r) ~ r–12, а, соответственно, сила отталкивания растет как Fот ~ r–13. Полагаем, что U(r = ¥) = 0 – при больших расстояниях потенциальная энергия взаимодействия равна нулю. В этом случае кривая взаимодействия описывается потенциалом Леннарда – Джонса
U( r) = – ar–6 + br–12.
Глубина потенциала равна U(rmin) = –a2/4b при rmin = (2b/a)1/6 – расстоянии, соответствующем наибольшей энергии связи молекул. Отметим, что в данном потенциале не учтены ориентационные взаимодействия, существенные для многоатомных молекул и кристаллов.
Full transcript