Loading…
Transcript

Quadratic Function

Cube Root Function in Real Life

Cube Root Function

Quadratic Function in Real Life

The photo on the right resembles a cube root function. It has a point of symmetry and appears to extend on into infinity and negative infinity.

The photo on the right resembles a quadratic function. It has a general U-shape and appears to have an axis of symmetry and a vertex.

Max & Min Values: Infinity and negative infinity

Vertex: None

Asymptotes: None

X Intercept: Set y to 0

Y Intercept: Set x to 0

Domain & Range: All Real Numbers

Symmetry: Point Symmetry, estimate point and test

Parent Function: y= cube root of x

Standard Form: y=a(x-c)^1/3 +d

Transformations:

Max Value: -b/2a, a<0

Min Value: -b/2a, a>0

Vertex: (h,k)

Asymptotes: none

X Intercept: Use (-b +/- sq. root of b^2-4ac)/2a

Y Intercept: Set x to 0 and solve

Domain: All real numbers

Range: All real numbers greater/equal to the y-intercept.

Symmetry: Axis of Symmetry, solve -b/2a

Parent Function: y=x^2

Standard Form: y= Ax^2 +Bx+C or y=a(x-h)^2 +k

Transformations:

Square Root Function

y=cube root of negative x, flips it across the y axis

y= cube root of x plus 2, moves function up 2 units

y= cube root of x minus 2, moves function down 2

y= cube root of (x+2), moves function left 2 units

y= cube root of (x-2), moves function right units

y= 3*cube root of x, stretches the graph

y= 1/3* cube root of x, shrinks the graph

y=x^2 +2, raises it up 2 units

y=x^2 -2, lowers it by 2 units

y=(x+2)^2, moves it left 2 units

y=(x-2)^2, moves it right 2 units

y=-x^2, flips function over x axis

Max & Min Values: No relative max/min

Vertex: (h,k)

Asymptotes: None

X Intercept: x>/= h

Y Intercept: y>/= k

Domain & Range: x>/=h, y>/=k

Symmetry: No symmetry

Parent Function: y= sq. root of x

Standard Form: y= (sq. root of x-h)+k

Transformations:

Greatest Integer Function

Max & Min Values: None

Vertex: None, but there is a starting point at (h,k)

Asymptotes: None

X Intercept: (n, n+1)

Y Intercept: k

Domain & Range: All Real Numbers, all integers

Symmetry: None

Parent Function: y= [[x]]

Standard Form: y=a[b(x-h)]+k

Transformations:

y= - sq. root of x, reflects across the x axis

y= sq. root of -x, reflects across y axis

y= sq. root of x-2, moves 2 units to right

y= sq. root of x+2, moves 2 units to left

y= (sq. root of x)+2, moves 2 units up

y= (sq. root of x)-2, moves 2 units down

a>1, stretches. a<1, flattens

Linear Functions

Square Root Function In Real Life

The photo on the right appears to model a square root function. It has a vertex/starting point and has the general shape of a square root function. It does not appear to have any asymptotes.

y=-[x], reflects across the x axis

y=[-x], reflects across the y axis

y=2[x], increases distance between steps

y=.5[x], decreases distance between steps

y=[x+2], moves graph left 2 units

y=[x-2], moves graph right 2 units

y=[x]+2, moves graph up 2 units

y=[x]-2, moves graph down 2 units

Changing b changes the length of each step

Exponential Function in Real Life

The photo on the right resembles a exponential function by the way its height increase dramatically and the way the line on the left part still decreases, giving the line an L like shape.

Max & Min Values: None, as they stretch on forever

Vertex: None

Asymptotes: None

X Intercept: Set y=0, solve for x

Y Intercept: Set x=0, solve for y

Domain & Range: All Real Numbers

Symmetry: None

Parent Function: y=x

Standard Form: Ax+By=C or y=mx+b

Transformations:

Linear Absolute Value Function

Exponential Function

Greatest Integer Function in Real Life

Linear Absolute Value in Real Life

Max & Min: When the absolute value in the function equals 0, then k

Vertex: (h,k)

Asymptotes: None

X Intercept: Solve as if y equals 0

Y Intercept: Solve as if x equals 0

Domain & Range: All real numbers, for y, greater than or equal to k

Constrained Domain: (example)1</= x </=2

Symmetry: x=h

Parent Function: y= |x|

Standard Form: y=|x-h|+k

Transformations:

The photo on the right resembles a step/greatest integer function. Each one of the steps are of equal length and equal distance apart.

Max & Min: None

Vertex: None

Asymptotes: y=b^x+1, y=1. If the function doesn't have addition, the asymptote is 0

X Intercept: None

Y Intercept: Substitute 0 for x

Domain: All real numbers

Range: y>the asymptote

Symmetry: None

Parent Function: y=b^x, where |b|>0

Standard Form: y= a*b^x

Transformations:

The photo on the right appears to resemble a linear absolute value function. It has a axis of symmetry and a vertex. It also has the V-shape that all linear absolute value functions have.

y=x+1 (Moves function up 1)

y-x-1 (Moves down 1)

y=2x (Becomes steeper)

Y=.5x (Becomes flatter)

Y=-x (Flips and slopes downward)

b=2

y= -1|x|, flips the function on the x axis

y= 2|x| narrows the function

y= |x-1| moves function right 1 unit

y= |x+1| moves function left 1 unit

y=|x| +1 moves function up 1

y=|x|-1 moves function down 1

0<b<1, flips function across y axis

y=b^x +1, raises it up 1 unit

y=b^x -1 lowers it 1 unit

y= 2*b^x steepens the graph

y= .5*b^x flattens the graph

y= -3*b^x flips function over x axis

Cubic Function

Linear Function in Real Life

Max & Min Values: None

Vertex: None

Asymptotes: None

X Intercept: Set y to 0

Y Intercept: Set x to 0

Domain & Range: All Real Numbers

Symmetry: Point Symmetry, estimate point and plug it into the factored out version of the function

Parent Function: y=x^3

Standard Form: y=ax^3+bx^2+cx+d

Tangent Line: (y-y0)=f'(x-value)(x-x0)

Transformations:

The bottle caps on the right reflect a linear function because it is a straight line and the heights(y-values) increase with length (x-values).

Cubic Function in Real Life

y=x^3 + 2, moves graph up 2 units

y=x^3 -2, moves graph down 2 units

y= (x+2)^3, moves graph left 2 units

y=(x-2)^3, moves graph right 2 units

A small negative number for 'a' closes the graph

A large positive number for 'b' opens the graph

-f(x) reflects it across the x-axis

f(-x) reflects it across the y-axis

Works Cited

The photo on the right resembles a cubic function. It has a point of symmetry and has the shape of a cubic function. It passes the vertical line test.

  • http://www.mathops.com/free/a1av002.php?358
  • http://www.freemathhelp.com/forum/threads/49933-Finding-X-and-Y-Intercepts-w-Absolute-Value-y-x-5
  • http://www.ck12.org/book/CK-12-Math-Analysis/r27/section/1.5/
  • http://tutorial.math.lamar.edu/Classes/CalcI/MinMaxValues.aspx
  • http://americanomath.wikispaces.com/Cubic+Functions
  • https://www.khanacademy.org/math/algebra2/functions_and_graphs/piecewise-functions-tutorial/v/graphs-of-absolute-value-functions
  • http://www.educadores.diaadia.pr.gov.br/arquivos/File/2010/artigos_teses/EDUCACAO_E_TECNOLOGIA/CUBICS.PDF
  • http://www.analyzemath.com/Graphing/graphing_cubic_function.html
  • http://www.matematicasvisuales.com/english/html/analysis/derivative/cubic.html
  • http://www.algebra.com/algebra/homework/quadratic/Quadratic_Equations.faq.question.11060.html
  • https://www.physicsforums.com/threads/finding-a-tangent-in-a-cubic-function.408091/
  • http://fcw.needham.k12.ma.us/~jessica_kondrat/fov1-00100c91/fov1-00100c96/5%3A4%20per6.pdf
  • http://msenux.redwoods.edu/IntAlgText/chapter9/section1.pdf

Works Cited

  • http://www.analyzemath.com/function/cube_root_function.html
  • http://www.onlinemathlearning.com/quadratic-square-root-cube-root-functions.html
  • http://mathbitsnotebook.com/Algebra1/FunctionGraphs/FNGTypeSquareRoot.html
  • http://www.math.fsu.edu/~everage/MAC1105/LibFunc.pdf
  • http://mathbitsnotebook.com/Algebra1/FunctionGraphs/FNGTypePiecewise.html
  • http://www.docstoc.com/docs/8859415/Greatest-Integer-Function
  • http://mathbitsnotebook.com/Algebra1/FunctionGraphs/FNGTypeSquareRoot.html
  • http://www.shmoop.com/linear-equations/absolute-value-functions.html
  • https://www.desmos.com/calculator
  • http://altbeta.icoachmath.com/math_dictionary/greatest_integer_function.html
  • http://math.about.com/od/algebra1help/a/Func.htm
  • http://mathbitsnotebook.com/Algebra1/FunctionGraphs/FNGTypePiecewise.html

Function family album

By Katheryn McGuire