Contributors:
This research was supported by:
Images:
SOFTWARE FOR VOLUMETRIC IMAGING
Web-based interactive visualization
IMAGE QUALITY
Comparison between Occiput and Siemens' E7-tools
E7-TOOLS
OCCIPUT
Transverse plane
OCCIPUT
E7-TOOLS
Coronal axis
Sagittal axis
Normalization: Yes
Attenuation: Yes
Scatter correction: Yes
Randoms correction: Yes
Number of MLEM iterations: 40
Normalization: Yes
Attenuation: No
Scatter correction: No
Randoms correction: No
Number of MLEM iterations: 40
BLUE: OCCIPUT
RED: E7-TOOLS
Blue - OCCIPUT
Red - E7-TOOLS
Saggital plane
Normalization: Yes
Attenuation: Yes
Scatter correction: Yes
Randoms correction: Yes
Number of MLEM iterations: 40
GATING
MOTION
UNCERTAINTY
REGISTRATION
RIEMANNIAN MANIFOLD TOMOGRAPHY
- load motion information
- create computational graph for motion correction
inv. pulse
..
MPRAGE
readout
Reg.
80 ms
vNAV
275 ms
MPRAGE
readout
Reg.
80 ms
MPRAGE
readout
vNAV
275 ms
Reg.
80 ms
TR gap
TI gap
Registration
MOTION
- load gating information
- create computational graph for gated reconstruction
COUNTS
ACTIVITY
1) install NiftyRec - CMake
2)
python setup.py build install
or pip install occiput
Organization of the code
How to install
How to integrate
- Python
- Matlab ray-tracers
- C/C++ ray-tracers *
*Kitware RTK uses NiftyRec for CT reconstruction
- UNIFIED
Imaging primitives at the bottom
Design on principle
PIPELINE
MODEL-BASED
INFERENCE
Description of the imaging system
pure Python
SPECT
MR
PET
- Python
- plugins for listmode streaming
and index to LOR
GPU primitives for volumetric imaging
NiftyRec libraries
UCL 2010-2013
Harvard University 2013-2015.
more than 10K downloads
DisplayNode
PET
- WEB-ORIENTED
- HIGH PERFORMANCE
RECONSTRUCTION USING iLang
share
collaborate
distribute
MR
MOTION EVENT DISCRIMINATION
SPECT
NATIVE GEOMETRY
PET-MR
OSEM RECONSTRUCTION CODE
X-RAY CT
GPU High Performance Computing