Introducing 

Prezi AI.

Your new presentation assistant.

Refine, enhance, and tailor your content, source relevant images, and edit visuals quicker than ever before.

Loading content…
Loading…
Transcript

Electromagnetic waves

บทนำ

ในปัจจุบันอุปกรณ์หรือเครื่องใช้ที่เกี่ยวข้องกับคลื่นแม่เหล็กไฟฟ้าได้เข้ามามีบทบาทในชีวิตประจำวันไม่ว่าจะเป็นโทรศัพท์เคลื่อนที่ โทรทัศน์ วิทยุ เรดาร์ เป็นต้น ล้วนเป็นเทคโนโลยีทางการสื่อสารที่พัฒนามาจากความรู้เรื่องคลื่นแม่เหล็กไฟฟ้า คลื่นแม่เหล็กไฟฟ้าเกิดขึ้นได้อย่างไรและมีทฤษฎีที่เกี่ยวข้องอะไร สามารถพบได้ในบนเรียนนี้

ประวัติแมกซ์เวลล์

Maxwell

James Clerk Maxwell (พ.ศ. 2374 - 2422) นักฟิสิกส์และคณิตศาสตร์ชาวอังกฤษผลงานที่ทำให้เขามีชื่อเสียงมากที่สุดคือ ทฤษฎีคลื่นแม่เหล็กไฟฟ้าและนอกจากนี้เขายังเป็นผู้นำวิทยาการด้านกลศาสตร์สถิติมาอธิบายการแจกแจงอัตราเร็วของโมเลกุลของแก๊สซึ่งมีความสำคัญในการพัฒนาทฤษฏีจลน์ของแก๊ส

ประวัติเฮิรตซ์

Hertz

Heinrich Rudolf Hertz (พ.ศ.2400-2437) นักวิทยาศาสตร์ชาวเยอรมันผู้ค้นพบคลื่นแม่เหล็กไฟฟ้า ซึ่งนำไปสู่การประดิษฐ์โทรทัศน์และเรดาร์ นอกจากนี้เฮิรตซ์ยังแสดงให้เห็นว่าแสงเป็นคลื่นแม่เหล็กไฟฟ้า

คลื่นแม่เหล็กไฟฟ้า

  • ทฤษฎีคลื่นแม่เหล็กไฟฟ้าของแมกซ์เวลล์และการทดลองของเฮิรตซ
  • การแผ่คลื่นแม่เหล็กไฟฟ้าจากสายอากาศ
  • สเปกตรัมคลื่นแม่เหล็กไฟฟ้า
  • โพลาไรเซชันของคลื่นแม่เหล็กไฟฟ้า

เนื้อหา

ทฤษฎีคลื่นแม่เหล็กไฟฟ้าของแมกซ์เวลล์และการทดลองของเฮิรตซ์

ทฤษฎีคลื่นแม่เหล็กไฟฟ้าของแมกซ์เวลล์และการทดลองของเฮิรตซ

แมกซ์เวลล์ได้รวบรวมกฎต่างๆที่เกี่ยวกับแม่เหล็กไฟฟ้า มาสรุปเป็นทฤษฎีโดยนำเสนอในรูปของสมการคณิตศาสตร์ ซึ่งแมกซ์เวลล์ใช้ทำนายว่าสนามไฟฟ้าที่เปลี่ยนแปลงตามเวลา ทำให้เกิดสนามแม่เหล็กและในขณะเดียวกันสนามแม่เหล็กที่เปลี่ยนแปลงตามเวลาก็ทำให้เกิดสนามไฟฟ้าด้วย โดยสนามไฟฟ้าและสนามแม่เหล็กต่างก็มีทิศตั้งฉากกัน แมกซ์เวลล์ยังทำนายอีกว่ามีคลื่นแม่เหล็กไฟฟ้าเกิดขึ้น จากการเหนี่ยวนำอย่างต่อเนื่องระหว่างสนามแม่เหล็กและสนามแม่เหล็ก ทำให้สนามไฟฟ้าและสนามแม่เหล็กเคลื่อนที่ออกจากแหล่งกำเนิดคลื่นแม่เหล็กไฟฟ้าเคลื่อนที่ไปในสุญญากาศด้วยอัตราเร็วเท่ากับอัตราเร็วของแสง แมกซ์เวลล์จึงเสนอความคิดว่าแสงเป็นคลื่นแม่เหล็กไฟฟ้าที่มีความถี่ช่วงหนึ่ง คำทำนายนี้ได้รับการยืนยันว่าเป็นจริงโดยการทดลองของเฮิรตซ์

ขดลวดเหนี่ยวนำในการทดลองของเฮิรตซ์

การทดลอง

การรับคลื่นแม่เหล็กฟ้าของเฮิรตซ์

การแผ่คลื่นแม่เหล็กไฟฟ้าจากสายอากาศ

การแผ่นคลื่นแม่เหล็กไฟฟ้าจากสายอากาศ

ทฤษฎีของแมกซ์เวลล์และการทดลองเฮิรตซ์ทำให้ทราบว่า ธรรมชาติมีคลื่นแม่เหล็กไฟฟ้าจริง และคลื่นแม่เหล็กไฟฟ้าเกิดจากการเคลื่อนที่ของประจุไฟฟ้าที่ถูกเร่ง เช่น อาจเกิดจากการเคลื่อนที่แบบฮาร์มอนิกอย่างง่ายของประจุไฟฟ้าในสายอากาศที่ ต่อกับแหล่งกำเนิดไฟฟ้ากระแสสลับแทนการปิดเปิดสวิตช์ไฟฟ้า กระแสตรงจากแบตเตอรี่ เมื่อต่อแหล่งกำเนิดไฟฟ้ากระแสสลับเข้ากับสายอากาศที่อยู่ในแนวดิ่ง ประจุไฟฟ้าในสายอากาศจะเคลื่อนที่กลับไปมาด้วยความเร่งในแนวดิ่ง เพราะประจุไฟฟ้าที่มีความเร่งจะแผ่รังสี จึงทำให้เกิดคลื่นแม่เหล็กไฟฟ้ากระจายออกมาจากสายอากาศทุกทิศ ทาง ยกเว้นทิศที่อยู่ในแนวเส้นตรงเดียวกับสายอากาศ การเกิดคลื่นแม่เหล็กไฟฟ้าในทิศตั้งฉากกับสายอากาศ

แผนภาพการเกิดคลื่น

แสดงสายอากาศซึ่งเป็นท่อนโลหะสองท่อน ต่อกับแหล่งกำเนิดไฟฟ้ากระแสสลับถ้าความต่างศักย์ เปลี่ยนแปลงกับเวลาในรูปไซน์ จะทำให้ประจุไฟฟ้าในสายอากาศเคลื่อนที่กลับไปมาใน ท่อนโลหะทั้งสองและจะมีคลื่นแม่เหล็กไฟฟ้ากระจายออกมาโดยรอบ

คลื่นแม่เหล็กไฟฟ้าประกอบด้วย และ ที่ตั้งฉากกัน

คลื่นแม่เหล็กไฟฟ้า

ผลคูณเชิงเวกเตอร์

ผลคูณเชิงเวกเตอร์

สเปกตรัมคลื่นแม่เหล็กไฟฟ้า

  • 1. คลื่นวิทยุ

-ระบบเอเอ็ม (A.M. = amplitude modulation)

-ระบบเอฟเอ็ม (F.M. = frequency modulation)

  • 2. คลื่นโทรทัศน์และไมโครเวฟ
  • 3. รังสีอินฟาเรด (infrared rays)
  • 4. แสง (light)
  • 5. รังสีอัลตราไวโอเลต (Ultraviolet rays)
  • 6. รังสีเอกซ์ (X-rays)
  • 7. รังสีแกมมา ( -rays)

สเปกตรัมคลื่นแม่เหล็กไฟฟ้า

คลื่นวิทยุมีความถี่ช่วง 104 - 109 Hz( เฮิรตซ์ ) ใช้ในการสื่อสาร คลื่นวิทยุมีการส่งสัญญาณ 2 ระบบคือ

1.ระบบเอเอ็ม (A.M. = amplitude modulation)

ระบบเอเอ็ม มีช่วงความถี่ 530 - 1600 kHz( กิโลเฮิรตซ์ ) สื่อสารโดยใช้คลื่นเสียงผสมเข้าไปกับคลื่นวิทยุเรียกว่า "คลื่นพาหะ" โดยแอมพลิจูดของคลื่นพาหะจะเปลี่ยนแปลงตามสัญญาณคลื่นเสียง

ในการส่งคลื่นระบบ A.M. สามารถส่งคลื่นได้ทั้งคลื่นดินเป็นคลื่นที่เคลื่อนที่ในแนวเส้นตรงขนานกับผิวโลกและคลื่นฟ้าโดยคลื่นจะไปสะท้อนที่ชั้นบรรยากาศไอโอโนสเฟียร์ แล้วสะท้อนกลับลงมา จึงไม่ต้องใช้สายอากาศตั้งสูงรับ

1. คลื่นวิทยุ

2.ระบบเอฟเอ็ม (F.M. = frequency modulation)

ระบบเอฟเอ็ม มีช่วงความถี่ 88 - 108 MHz (เมกะเฮิรตซ์) สื่อสารโดยใช้คลื่นเสียงผสมเข้ากับคลื่นพาหะ โดยความถี่ของคลื่นพาหะจะเปลี่ยนแปลงตามสัญญาณคลื่นเสียง

ในการส่งคลื่นระบบ F.M. ส่งคลื่นได้เฉพาะคลื่นดินอย่างเดียว ถ้าต้องการส่งให้คลุมพื้นที่ต้องมีสถานีถ่ายทอดและเครื่องรับต้องตั้งเสาอากาศสูง ๆ รับ

2. คลื่นโทรทัศน์และไมโครเวฟ

คลื่นโทรทัศน์และไมโครเวฟมีความถี่ช่วง 108 - 1012 Hz มีประโยชน์ในการสื่อสาร แต่จะไม่สะท้อนที่ชั้นบรรยากาศไอโอโนสเฟียร์ แต่จะทะลุผ่านชั้นบรรยากาศไปนอกโลก ในการถ่ายทอดสัญญาณโทรทัศน์จะต้องมีสถานีถ่ายทอดเป็นระยะ ๆ เพราะสัญญาณเดินทางเป็นเส้นตรง และผิวโลกมีความโค้ง ดังนั้นสัญญาณจึงไปได้ไกลสุดเพียงประมาณ 80 กิโลเมตรบนผิวโลก อาจใช้ไมโครเวฟนำสัญญาณจากสถานีส่งไปยังดาวเทียม แล้วให้ดาวเทียมนำสัญญาณส่งต่อไปยังสถานีรับที่อยู่ไกล ๆ

เนื่องจากไมโครเวฟจะสะท้อนกับผิวโลหะได้ดี จึงนำไปใช้ประโยชน์ในการตรวจหาตำแหน่งของอากาศยาน เรียกอุปกรณ์ดังกล่าวว่า เรดาร์ โดยส่งสัญญาณไมโครเวฟออกไปกระทบอากาศยาน และรับคลื่นที่สะท้อนกลับจากอากาศยาน ทำให้ทราบระยะห่างระหว่างอากาศยานกับแหล่งส่งสัญญาณไมโครเวฟได้

3. รังสีอินฟาเรด

รังสีอินฟาเรดมีช่วงความถี่ 1011 - 1014 Hz หรือความยาวคลื่นตั้งแต่ 10-3 - 10-6 เมตร ซึ่งมีช่วงความถี่คาบเกี่ยวกับไมโครเวฟ รังสีอินฟาเรดสามารถใช้กับฟิล์มถ่ายรูปบางชนิดได้ และใช้เป็นการควบคุมระยะไกลหรือ

รีโมทคอนโทรลกับเครื่องรับโทรทัศน์

ได้

แสงมีช่วงความถี่ 1014Hz หรือความยาวคลื่น 4x10-7 - 7x10-7 เมตร เป็นคลื่นแม่เหล็กไฟฟ้าที่ประสาทตาของมนุษย์รับได้ สเปคตรัมของแสงสามารถแยกได้ดังนี้

4. แสง

รังสีอัลตราไวโอเลต หรือ รังสีเหนือม่วง มีความถี่ช่วง 1015 - 1018 Hz เป็นรังสีตามธรรมชาติส่วนใหญ่มาจากการแผ่รังสีของดวงอาทิตย์ ซึ่งทำให้เกิดประจุอิสระและไอออนในบรรยากาศชั้น

ไอโอโนสเฟียร์ รังสีอัลตราไวโอเลต สามารถทำให้เชื้อโรคบางชนิดตายได้แต่มีอันตรายต่อผิวหนังและตาคน

5. รังสีอัลตราไวโอเลต

รังสีเอกซ์ มีความถี่ช่วง 1016 - 1022 Hz มีความยาวคลื่นระหว่าง 10-8 - 10-13 เมตร ซึ่งสามารถทะลุสิ่งกีดขวางหนา ๆ ได้ หลักการสร้างรังสีเอกซ์คือ การเปลี่ยนความเร็วของอิเล็กตรอน มีประโยชน์ทางการแพทย์ในการตรวจดูความผิดปกติของอวัยวะภายในร่างกาย ในวงการอุตสาหกรรมใช้ในการตรวจหารอยร้าวภายในชิ้นส่วนโลหะขนาดใหญ่ ใช้ตรวจหาอาวุธปืนหรือระเบิดในกระเป๋าเดินทาง และศึกษาการจัดเรียงตัวของอะตอมในผลึก

6. รังสีเอกซ์

รังสีแกมมามีสภาพเป็นกลางทางไฟฟ้ามีความถี่สูงกว่ารังสีเอกซ์ เป็นคลื่นแม่เหล็กไฟฟ้าที่เกิดจากปฏิกิริยานิวเคลียร์และสามารถกระตุ้นปฏิกิริยานิวเคลียร์ได้ มีอำนาจทะลุทะลวงสูง

7. รังสีแกมมา

โพลาไรเซชันของคลื่นแม่เหล็กไฟฟ้า

เมื่อส่งคลื่นแม่เหล็กไฟฟ้าออกไปสนามไฟฟ้าจะเปลี่ยนแปลงทิศกลับไปมาในแนวดิ่งเสมอ จึงกล่าวว่าคลื่นแม่เหล็กไฟฟ้านี้เป็นคลื่นโพลาไรส์ (polarizedwave) ในแนวดิ่ง สำหรับสายอากาศที่อยู่ในแนวระดับ เมื่อส่งคลื่นแม่เหล็กไฟฟ้าออกไป สนามไฟฟ้าจะเปลี่ยนแปลงทิศกลับไปกลับมาในแนวระดับ คือเป็นคลื่นโพลาไรส์ในแนวระดับ

โพลาไรเซชันของคลื่นแม่เหล็กไฟฟ้า

เราทราบแล้วว่า คลื่นแม่เหล็กไฟฟ้าที่ส่งออกมาจากสายอากาศโทรทัศน์เป็นคลื่นโพลาไรส์เพราะสนามไฟฟ้าเปลี่ยนทิศกลับไปมาในแนวเดียวกันเสมอ แสงก็เป็นคลื่นแม่เหล็กไฟฟ้า ดังนั้นแสงมีโพลาไรเซชันหรือไม่

แหล่งกำเนิดคลื่นแสงโดยทั่วไปเช่น ดวงอาทิตย์ หลอดไฟ จะปล่อยคลื่นแม่เหล็กไฟฟ้า (คลื่นแสง) ซึ่งสนามไฟฟ้ามีทิศตั้งฉากกับทิศการเคลื่อนที่ของคลื่นเสมอ ไม่ว่าคลื่นจะอยู่ ณ ตำแหน่งใด แต่สนามไฟฟ้าของแสงที่ส่งออกมาจากดวงอาทิตย์มีทิศต่างๆกันมากมาย ดังรูป 18.18 ก ดังนั้นแสงจากแหล่งกำเนิดแสงจึงเป็น แสงไม่โพลาไรส์

โพลาไรเซชันของแสง

เมื่อแสงไม่โพลาไรส์ผ่านแผ่นโพลารอยด์จะออกมาเป็นแสงโพลาไรส์ ซึ่งกล่าวได้ว่าเป็นการทำแสงโพลาไรส์โดยใช้วิธีดูดกลืนแสง ยังมีวิธีอื่นอีกที่ให้แสงโพลาไรส์ คือ การสะท้อนแสง เมื่อให้แสงไม่โพลาไรส์ตกกระทบผิววัตถุ เช่น แก้ว น้ำ หรือกระเบื้อง แสงสะท้อนจะเป็นแสงโพลาไรส์ เมื่อแสงทำมุมตกกระทบเป็นค่าเฉพาะค่าหนึ่ง

โพลาไรเซซันโดยการสะท้อน

โพลาไรเซชันโดยการกระเจิงของแสง

เมื่อแสงอาทิตย์ผ่านเข้ามาในบรรยากาศของโลก แสงจะกระทบโมเลกุลของอากาศหรืออนุภาคใน

บรรยากาศอิเล็กตรอนในโมเลกุลจะดูดกลืนแสงที่

ตกกระทบนั้นและจะปลดปล่อยแสงนั้นออกมาอีก

ครั้งหนึ่งในทุกทิศทาง ปรากฏการณ์นี้เรียกว่า การกระเจิงของแสง ซึ่งได้ศึกษามาแล้วในบทเรียนเรื่องแสง โดยศึกษาผลของการกระเจิงที่ทำให้เห็นท้องฟ้าเป็นสีต่างๆ

เมื่อแสงผ่านเข้าไปในแก้ว แสงจะเคลื่อนที่ด้วยอัตราเร็วเท่ากันทุกทิศทาง เพราะแก้วมีดรรชนีหักเหเพียงค่าเดียว แต่เมื่อแสงผ่านเข้าไปในผลึกแคลไซต์หรือควอตซ์ แสงจะมีอัตราเร็วไม่เท่ากันทุกทิศทาง ด้วยเหตุนี้แสงที่ผ่านแคลไซต์จึงหักเหออกเป็น 2 แนว (double diffraction หรือ birefringence) ดังรูป 18.22 รังสีหักเหทั้งสองแนวเป็นแสงโพลาไรส์ โดยมีสนามไฟฟ้าของรังสีหักเหแต่ละรังสีตั้งฉากกัน ซึ่งแสดงด้วยลูกศรและจุด รังสีที่แทนด้วยจุด เรียกว่า รังสีธรรมดา (ordinary ray) มีอัตราเร็วเท่ากันทุกทิศทาง รังสีที่แทนด้วยลูกศร เรียกว่า รังสีพิเศษ (extraordinary ray) มีอัตราเร็วในผลึกต่างกันในทิศที่ต่างกัน

โพลาไรเซชันโดยการกระเจิงของแสง

สูตรคลื่นแม่เหล็กไฟฟ้า

สูตร

Learn more about creating dynamic, engaging presentations with Prezi