Loading…
Transcript

Function Family Album

Meghan Nagia

Absolute Value Parent Function

Absolute Value Function

Equation: f(X) = |X|

Domain: (-∞, ∞)

Range: [0, ∞)

X-Int: (0, 0)

Y-Int: (0, 0)

End Behavior:

As X--> ∞ , f(X)--> ∞

As X--> -∞ , f(X)--> ∞

A shift to the right 3

End Behavior:

As X--> ∞ , f(X)--> ∞

As X--> -∞ , f(X) --> ∞

Equation: f(x) = |X + 3|

Domain: (- ∞ , ∞ )

Range: [0, ∞ )

X-Int: (3, 0)

Y-Int: (0, 3)

Translation Right

Translation UP

A shift Up 4

Equation: f(X) = |X| + 4

Domain: (- ∞ , ∞ )

Range: [4, ∞ )

X-Int: None

Y-Int: (0, 4)

End Behavior:

As X--> ∞ , f(X)--> ∞

As X--> -∞ , f(X)--> ∞

A Vertical Flip - Reflection over the X-Axis

Equation: f(X) = -|X|

Domain: (- ∞ , ∞ )

Range: (- ∞ , 0]

X-Int: (0, 0)

Y-Int: (0,0)

End Behavior:

As X--> ∞ , f(X)--> -∞

As X--> -∞, f(X)--> -∞

Reflection

Vertical

Stretch

Vertical Stretch By a Factor of 5

Equation: f(X) = 5|X|

Domain: (- ∞ , ∞ )

Range: [0, ∞ )

X-Int: None

Y-Int: (0, 0)

End Behavior:

As X--> ∞ , f(X)--> ∞

As X--> -∞ , f(X)--> -∞

Solving Absolute Value Equations

Steps:

1. Move Constants to 1 Side

2. Multiply/divide to get absolute value alone

3. Write 3 equations: 1 positive & 1 negative

4. Solve & Check Work

Equations & Steps

|3X - 13| + 9 = 32

|3X -13| = 23

3X - 13 = 23 3X - 13 = -23

3X = 36 3X = -10

X = 12 X = -10/3 (-3.33)

4|X - 5| +10 = 30

4|X - 5| = 20

|X - 5| = 5

X - 5 = 5 X - 5 = -5

X = 10 X = 0

Real World Example

Absolute Value in the Real World

Birds in Formation

This is a picture of birds flying in formation. Typically, most birds fly in a "V" formation, which is a good example of an absolute value function because the shape of an absolute value function is also a "V".

Exponential Parent Function

Equation: f(X) = 2^X

Domain: (-∞, ∞)

Range: (0, ∞)

X-Int: None

Y-Int: (0, 1)

End Behavior:

As X--> ∞, f(x)--> ∞

As X--> -∞, f(X)--> 0

Exponential Function

Asymptote: y= 0

Translation

left

A Shift to the left 5

Equation: f(X) = 2^(X + 5)

Domain: (-∞, ∞)

Range: (0, ∞)

X-Int: None

Y-Int: (0, 32) f(X) = 2^(0 + 5) --> 2^5=32

End Behavior:

As X--> ∞, f(X)--> ∞

As X--> -∞, f(X)--> 0

Asymptote: y= 0

A shift down 4

Equation: f(X) = 2^X - 4

Domain: (-∞, ∞)

Range: (-4, ∞)

X-Int: (2, 0)

Y-Int: (0, -3)

End Behavior:

As X--> ∞, f(X)--> ∞

As X--> -∞, f(X)--> -4

Translation Down

Asymptote: y= -4

Reflection

A Horizontal Flip

Reflection over the Y-Axis

Equation: f(X) = 2^(-X)

Domain: (-∞, ∞)

Range: (0, ∞)

X-Int: None

Y-Int: (0, 1)

End Behavior:

As X--> ∞, f(X)--> 0

As X--> -∞, f(X)--> ∞

Asymptote: y= 0

Vertical Shrink by factor of 1/4

Vertical Shrink

Equation: f(X) = (1/4) 2^X

Domain: (-∞, ∞)

Range: (0, ∞)

X-Int: None

Y-Int: (0, 1/4)

End Behavior:

As X--> ∞, f(X)--> ∞

As X--> -∞, f(X)--> 0

Asymptote: y= 0

Equation & Steps

Solving Exponential Equations

Steps:

1. Isolate the base and exponent

2. Rewrite both sides of the equation with the same base

3. Set the exponents equal to each other

4. Solve

9^(2X+ 1) = 243 ^(4X - 6)

3^2(2X + 1) = 3^5(4X - 6)

2(2X + 1) = 5(4X - 6)

4X + 2 = 20X -30

32 = 16X

X = 2

6^(3X + 7) = 1/216 ^(2X - 12)

6^(3X + 7) = 6^-3(2X - 12)

3X +7 = -3(2X - 12)

3X + 7 = 6X -36

-3X = -43

X = 43/3 (14.33)

Exponential function in real life

Real World Example

Eiffel Tower

This is the Eiffel Tower located in Paris, France. The sides of the Eiffel Tower are good examples of an exponential function. The shape of the tower sideways is an upwards curve, which is similar to the shape of an Exponential function.

Logarithmic Parent Function

2

Equation: f(X) = log X

Domain: (0, ∞)

Range: (-∞, ∞)

X-Int: (1/2, 0)

Y-Int: None

End Behavior:

As X--> ∞, f(X)--> ∞

As X--> 0, f(X)--> -∞

Translation Up

Asymptote: X= 0

Logarithmic Function

Translation Right

A Shift to the Right 5

2

Equation: f(X) = log (X - 5)

Domain: (5, ∞)

Range: (-∞, ∞)

X-Int: (11/2, 0)

Y-Int: None

End Behavior:

As X--> ∞, f(X)--> ∞

As X--> 5, f(X)--> -∞

Asymptote: X = 5

A Shift Up 3

2

Equation: f(X) = log X + 5

Domain: (0, ∞)

Range: (-∞, ∞)

X-Int: (1/8, 0)

Y-Int: None

End Behavior:

As X--> ∞, f(X)--> ∞

As X--> 0, f(X)--> -∞

Asymptote: X = 0

A Vertical Flip

Reflection over the x-axis

2

Reflection

Equation: f(X) = -log X

Domain: (0, ∞)

Range: (-∞, ∞)

X-Int: (1, 0)

Y-Int: None

End Behavior:

As X--> ∞, f(X)--> -∞

As X--> 0, f(X)--> ∞

Asymptote: X = 0

Vertical Stretch by Factor of 6

2

Vertical Stretch

Equation: f(X) = 6 log X

Domain: (0, ∞)

Range: (-∞, ∞)

X-Int: (1, 0)

Y-Int: None

End Behavior:

As X--> ∞, f(X)--> ∞

As X--> 0, f(X)--> -∞

Asymptote: X= 0

Solving Logarithmic Equations

Steps:

1. Get logs on 1 side

2. Condense the logs (using logarithm properties)

3. Exponentiate (using the base)

4. Solve

4

Equations & Steps

4

2 log X = log 32 + log 8

0 = log 32 + log 8 - 2 log X

0 = log 32 + log 8 - log X^2

0 = log (32 x 8) / X^2

0 = log (256/X^2)

4^0 = 4 log (256/X^2)

1 = 256/X^2

X^2 = 256

X = +/- 16

X = 16

3

4

3

log 8 + log (X + 2) = 4

log 8(X + 2) = 4

3 log 8(X + 2) = 3^4

8X + 16 = 81

8X = 65

X = 65/8 (8.125)

Logarithmic Function In real Life

Real World Example

Wilted Tree

This is a picture of a wilted tree. The shape of leaves drooping on a wilted tree is similar to the downward curve shape of a logarithmic function.

Real world example

Quadratic Parent Function

Quadratic function

Equation: f(X) = X^2

Domain: (-∞, ∞)

Range: [0, ∞)

X-Int: (0, 0)

Y-Int: (0, 0)

End Behavior:

As X--> ∞, f(x)--> ∞

As X--> -∞, f(X)--> ∞

Translation right

A Shift to the Right 7

Equation: f(X) = (X - 7)^2

Domain: (-∞, ∞)

Range: [0, ∞)

X-Int: (7, 0)

Y-Int: (0, 49) -->(0 - 7)^2 = -7^2

End Behavior:

As X--> ∞, f(x)--> ∞

As X--> -∞, f(X)--> ∞

A shift down 4

End Behavior:

As X--> ∞, f(x)--> ∞

As X--> -∞, f(X)--> ∞

Equation: f(X) = X^2 - 4

Domain: (-∞, ∞)

Range: [4, ∞)

X-Int: (2, 0) & (-2, 0)

Y-Int: (0, 4)

Translation Down

Reflection

A vertical flip - Reflection over the x-axis

Equation: f(X) = -X^2

Domain: (-∞, ∞)

Range: [0, -∞)

X-Int: (0, 0)

Y-Int: (0, 0)

End Behavior:

As X--> ∞, f(x)--> -∞

As X--> -∞, f(X)--> -∞

Horizontal

Stretch

Horizontal stretch by 1/4

Equation: f(X) = (1/4X)^2

Domain: (-∞, ∞)

Range: [0, ∞)

X-Int: (0, 0)

Y-Int: (0, 0)

End Behavior:

As X--> ∞, f(x)--> ∞

As X--> -∞, f(X)--> ∞

Solving quadratic equations

Steps:

1. Rewrite in standard form (Ax^2 + Bx + C)

2. Take out the GCF

3. Factor completely using factor methods (difference of squares, difference of cubes, etc)

If factoring is not possible, use the quadratic method ( -b +/- square root of b^2 - 4AC ALL over 2A)

4. Use the Zero Product Rule (set factored equation equal to zero)

5. Solve

2 + 2 7 2 - 2 7

__________

4

X = 1.8, X = -0.8

______________________

2(2)

12X^2 + 23X + 11X + 16 + 4 = 0

12X+2 + 34X + 20 = 0

2( 6X^2 + 17X + 10) = 0

(X + 2) (6X + 5) = 0

(X + 2) = 0 (6X + 5) = 0

X = -2, X = -5/6

7X^2 + 9X^2 - 11X - 5X+ 20 + 4

16X^2 - 16X +24

8( 2X^2 - 2X + 3)

2 +/- ( 2^2 - 4(-2)(3) )

2 +/- 28

________________

4

Quadratic function in the real world

Equations & Steps

Moon Bridge

This is a moon bridge at the Japanese Tea Gardens in San Francisco. The bridge is shaped like an upside down U, which is similar to the shape of a quadratic function, which is parabolic. More specifically, this bridge more closely resembles a quadratic function that has been reflected over the X-axis.

rational parent function

Equation: f(X) = 1/X

Domain: (-∞, 0) U (0, ∞)

Range: (-∞, 0) U (0, ∞)

X-Int: None

Y-Int: None

Rational Function

Asymptote: X = 0, Y = 0

End Behavior:

Top Curve:

As X--> ∞ , f(X)--> 0

As X--> 0 , f(X)--> ∞

Bottom Curve:

As X--> -∞, f(X)--> 0

As X--> 0, f(X)--> -∞

A Shift to the right 3

Equation: f(X) = 1/X-3

Domain: (-∞, 3) U (3, ∞)

Range: (-∞, 0) U (0, ∞)

X-Int: None

Y-Int: None

Asymptote: X = 3, Y = 0

End Behavior:

Top Curve:

As X--> ∞ , f(X)--> 0

As X--> 3 , f(X)--> ∞

Bottom Curve:

As X--> -∞, f(X)--> 0

As X--> 3, f(X)--> -∞

Translation Right

A shift down 5

Equation: f(X) = (1/X )- 5

Domain: (-∞, 0) U (0, ∞)

Range: (-∞, -5) U (-5, ∞)

X-Int: None

Y-Int: None

Asymptote: X = 0, Y = -5

End Behavior:

Top Curve:

As X--> ∞ , f(X)--> -5

As X--> 0 , f(X)--> ∞

Bottom Curve:

As X--> -∞, f(X)--> -5

As X--> 0, f(X)--> -∞

Translation Down

A vertical Flip - Reflection over the x-Axis

Equation: f(X) = -1/X

Domain: (-∞, 0) U (0, ∞)

Range: (-∞, 0) U (0, ∞)

X-Int: None

Y-Int: None

Asymptote: X = 0, Y = 0

End Behavior:

Top Curve:

As X--> -∞ , f(X)--> 0

As X--> 0 , f(X)--> ∞

Bottom Curve:

As X--> ∞, f(X)--> 0

As X--> 0, f(X)--> -∞

Reflection

A horizontal stretch by a factor of 2

Equation: f(X) = 2/X

Domain: (-∞, 0) U (0, ∞)

Range: (-∞, 0) U (0, ∞)

X-Int: None

Y-Int: None

End Behavior:

Top Curve:

As X--> ∞ , f(X)--> 0

As X--> 0 , f(X)--> ∞

Bottom Curve:

As X--> -∞, f(X)--> 0

As X--> 0, f(X)--> -∞

Horizontal

Stretch

Solving Rational Equations

Steps:

1. If necessary, factor out the denominators

2. Multiply fractions by LCD to get rid of them

3. Solve

4. Check solution to make sure it isn't extraneous (makes the denominator 0)

Equations & Steps

6/X+4 + 3X + 4/X^2-16 = 1/X -4

6/X+4 + 3x +4/(X-4)(X+4) = 1/X-4

LCD = (X-4)(X+4)

(X-4)( (X+4) (6/X+4) + (3X/(X+4)(X-4) = (1/X+4) )

6(X-4) + 3x + 4 = 1(X+4)

6X-24 + 3x +4 = X + 4

8X = 24

X = 3

CHECK WORK:

5/3X+3 + 8/9 = 28/36

5/3(X+1) + 8/9 = 28/36

LCD = 36(X+1)

(36(X+1) ( (5/3(X+1) + (8/9) = (28/36) )

5(12) + 8(4)(X+1) = 28(X+1)

60 + 32X + 32 = 28X + 28

4X = -64

X = -16

CHECK WORK:

Rational Function in the Real World

Real World Example

Roundabout

This is a roundabout. The curves, along the roundabout that are diagonal from each other, are a good example of a rational function. In the right corner there is an upwards curve and in the bottom left corner there is a downwards curve, which is similar to the shape of a rational function.

The End

Thanks for reading/watching my function family album