Introducing
Your new presentation assistant.
Refine, enhance, and tailor your content, source relevant images, and edit visuals quicker than ever before.
Trending searches
Os ácidos nucleicos são macromoléculas de natureza química, formadas por nucleotídeos. Esses são compostos por grupamento fosfórico (fosfato), glicídio (pentose) e uma base nitrogenada, compondo o material genético contido nas células dos seres vivos.
Presentes no núcleo dos eucariontes e dispersos no hialoplasma dos procariontes, os ácidos nucleicos podem ser de dois tipos: ácido desoxirribonucleico (DNA) e ácido ribonucleico (RNA), ambos relacionados ao mecanismo de controle metabólico celular e transmissão hereditária das características.
O DNA se diferencia do RNA por possuir o açúcar desoxirribose e os nucleotídeos adenina, citosina, guanina e timina. No RNA, o açúcar é a ribose e os nucleotídeos são adenina, citosina, guanina e uracila (a uracila entra no lugar da timina).
A partir de experimentos feitos por vários pesquisadores e utilizando os resultados da complexa técnica de difração com raios X, Watson e Crick concluíram que, no DNA, as cadeias complementares são helicoidais, sugerindo a idéia de uma escada retorcida.
Nessa escada, os corrimãos são formados por fosfatos e desoxirribose, enquanto os degraus são constituídos pelos pares de bases nitrogenadas.
Os átomos de carbono das moléculas de ribose e desoxirribose são numerados conforme a figura ao lado. Observe que os carbonos do açúcar são numerados com uma linha (‘) a fim de distingui-los dos outros carbonos do nucleotídeo.
Em cada fita do DNA, o “corrimão” é formado por ligações entre moléculas de açúcar e radicais fosfato. Note que o radical fosfato se liga ao carbono 3’ de um açúcar e ao carbono 5’ do seguinte.
As duas cadeias de nucleotídeos do DNA são unidas uma a outra por ligações chamadas de pontes de hidrogênio, que se formam entre as bases nitrogenadas de cada fita.
O pareamento de bases ocorre de maneira precisa: uma base púrica se liga a uma pirimídica – adenina (A) de uma cadeia pareia com a timina (T) da outra e guanina (G) pareia com citosina (C).
O DNA controla toda a atividade celular. Ele possui a “receita” para o funcionamento de uma célula. Toda vez que uma célula se divide, a “receita” deve ser passada para as células-filhas. Todo o “arquivo” contendo as informações sobre o funcionamento celular precisa ser duplicado para que cada célula-filha receba o mesmo tipo de informação que existe na célula-mãe. Para que isso ocorra, é fundamental que o DNA sofra “auto-duplicação”.
O modelo estrutural do DNA proposto por Watson e Crick explica a duplicação dos genes: as duas cadeias do DNA se separam e cada uma delas orienta a fabricação de uma metade complementar.
O experimento dos pesquisadores Meselson e Stahl confirmou que a duplicação do DNA é semiconservativa, isto é, que metade da molécula original se conserva íntegra em cada uma das duas moléculas-filhas.
Diversos aspectos da duplicação do DNA já foram desvendados pelos cientistas. Hoje, sabe-se que há diversas enzimas envolvidas nesse processo. Certas enzimas desemparelham as duas cadeias de DNA, abrindo a molécula. Outras desenrolam a hélice dupla, e há, ainda, aquelas que unem os nucleotídeos entre si. A enzima que promove a ligação dos nucleotídeos é conhecida como DNA polimerase, pois sua função é construir um polímero (poli = muitas e meros = parte) de nucleotídeos.
O DNA contém uma mensagem, em código, que precisa ser decifrada e traduzida em proteínas, muitas das quais atuarão nas reações metabólicas da célula. A mensagem contida no DNA deve, inicialmente, ser passada para moléculas de RNA que, por sua vez, orientarão a síntese de proteínas. O controle da atividade celular pelo DNA, portanto, é indireto e ocorre por meio da fabricação de moléculas de RNA, em um processo conhecido como transcrição.
As moléculas de RNA são constituídas por uma sequência de ribonucleotídeos, formando uma cadeia (fita) simples.
Existem três tipos básicos de RNA, que diferem um do outro no peso molecular: o RNA ribossômico, representado por RNAr, o RNA mensageiro, representado por RNAm e o RNA transportador, representado por RNAt.
O RNA ribossômico é o de maior peso molecular e constituinte majoritário do ribossomo, organóide relacionado à síntese protéica na célula.
O RNA mensageiro é o de peso molecular intermediário e atua conjuntamente com os ribossomos na síntese proteica.
O RNA transportador é o mais leve e encarregado de transportar os aminoácidos que serão utilizados na síntese proteica.
A síntese de RNA (mensageiro, por exemplo) se inicia com a separação das duas fitas de DNA. Apenas uma das fitas do DNA serve de molde para a produção da molécula de RNAm. A outra fita não é transcrita. Essa é uma das diferenças entre a duplicação do DNA e a produção do RNA.
As sequências codificantes são chamadas de éxons. Elas são intercaladas por regiões não codificantes, chamadas de íntrons, que são inicialmente transcritas em RNA no núcleo, mas não estão presentes no mRNA final no citoplasma, não sendo representada no produto protéico final. Em muitos genes, o tamanho cumulativo dos exons é muito menor que o de íntrons.
A mensagem genética contida no DNA é formada por um alfabeto de quatro letras que correspondem aos quatro nucleotídeos: A, T, C e G. Com essas quatros letras é preciso formar “palavras” que possuem o significado de “aminoácidos”. Cada proteína corresponde a uma “frase” formada pelas “palavras”, que são os aminoácidos. De que maneira apenas quatro letras do alfabeto do DNA poderiam ser combinadas para corresponder a cada uma das vinte “palavras” representadas pelos vinte aminoácidos diferentes que ocorrem nos seres vivos.
A correspondência entre o trio de bases do DNA, o trio de bases do RNA e os aminoácidos por eles especificados constitui uma mensagem em código que passou a ser conhecida como “código genético”.
Mas, surge um problema. Como são vinte os diferentes aminoácidos, há mais códons do que tipos de aminoácidos? Deve-se concluir, então, que há aminoácidos que são especificados por mais de um códon, o que foi confirmado. A tabela abaixo, especifica os códons de RNAm que podem ser formados e os correspondentes aminoácidos que especificam.
Uma proposta confirmada por métodos experimentais, foi a de que cada três letras (uma trinca de bases) do DNA corresponderia uma “palavra”, isto é, um aminoácido. Nesse caso, haveria 64 combinações possíveis de três letras, o que seria mais do que suficiente para codificar os vinte tipos diferentes de aminoácidos (matematicamente, utilizando o método das combinações seriam, então, 4 letras combinadas 3 a 3, ou seja, 64 combinações possíveis).
O código genético do DNA se expressa por trincas de bases, que foram denominadas códons. Cada códon, formado por três letras, corresponde a um certo aminoácido.
Dizemos que o código genético é universal, pois em todos os organismos da Terra atual ele funciona da mesma maneira, quer seja em bactérias, em uma cenoura ou no homem.
O códon AUG, que codifica para o aminoácido metionina, também significa início de leitura, ou seja, é um códon que indica aos ribossomos que é por esse trio de bases qe deve ser iniciada a leitura do RNAm.
Note que três códons não especificam nenhum aminoácido. São os códons UAA, UAG e UGA, chamados de códons e parada durante a “leitura” (ou stop códons) do RNA pelos ribossomos, na síntese protéica.
Diz-se que o código genético é degenerado porque cada “palavra” (entenda-se aminoácido) pode ser especificada por mais de uma trinca.
Tradução é o nome utilizado para designar o processo de síntese de proteínas. Ocorre no citoplasma com a participação, entre outros, de RNA e de aminoácidos.
RNA ribossômico, RNAr. Associando-se a proteínas, as fitas de RNAr formarão os ribossomos, orgânulos responsáveis pela leitura da mensagem contida no RNA mensageiro;
RNAs transportadores, RNAt. Assim chamados porque serão os responsáveis pelo transporte de aminoácidos até o local onde se dará a síntese de proteínas junto aos ribossomos. São moléculas de RNA de fita simples, de pequeno tamanho, contendo, cada uma, cerca de 75 a 85 nucleotídeos. Cada fita de RNAt torce-se sobre si mesma, adquirindo o aspecto visto na figura abaixo.
Duas regiões se destacam em cada transportador: uma é o local em que se ligará o aminoácido a ser transportado e a outra corresponde ao trio de bases complementares (chamado anticódon) do RNAt, que se encaixará no códon correspondente do RNAm.
Anticódon é o trio de bases do RNAt, complementar do códon do RNAm.
A tradução é um processo no qual haverá a leitura da mensagem contida na molécula de RNAm pelos ribosomo, decodificando a linguagem de ácido nucleico para a linguagem de proteína.
Cada RNAt em solução liga-se a um determinado aminoácido, formando-se uma molécula chamada aminoacil-RNAt, que conterá, na extremidade correspondente ao anticódon, um trio de códon do RNAm.
Para entendermos bem este processo, vamos admitir que ocorra a síntese de um peptídeo, o que se dará a partir da leitura de um RNAm. A leitura (tradução) será efetuada por um ribossomo que se deslocará ao longo do RNAm.
Em algumas células, certas proteínas são produzidas em grande quantidade. Por exemplo, a observação de glândulas secretoras de certos hormônios de natureza proteica (que são liberados para o sangue, indo atuar em outros órgãos do mesmo organismo) mostra, em certos locais, uma fileira de ribossomos efetuando a leitura do mesmo RNA mensageiro. Assim, grandes quantidades da mesma proteína são produzidas.
Ao conjunto de ribossomos, atuando ao longo se um RNAm, dá-se o nome de polirribossomos.
Existem diversas técnicas de modificação, identificação, mapeamento e manipulação dos genes.
Entre elas temos:
Enzimas de restrição
Eletroforese
Clonagem gênica
PCR
Fingerprint de DNA
Terapia gênica
OGM - organismos geneticamente modificados
A Eletroforese em gel é uma técnica usada para separar fragmentos de DNA (ou outras macromoléculas, como o RNA e proteínas) com base no tamanho e carga. A eletroforese envolve a passagem de uma corrente através de um gel contendo as moléculas de interesse.