만나보세요 

Prezi AI.

새로운 프레젠테이션 도우미가 기다리고 있어요.

뎌욱 빠르게 컨텐츠를 다듬고, 보강하고, 편집하고, 원하는 이미지를 찾고, 시각자료를 편집하세요.

콘텐츠 로딩 중...
스크립트

Content Representation

Representation of Content and Style

Style Representation

  • Pre-trained deep CNN outputs high-level feature of the image.
  • Higher level features approximated the objects that human can recognize.

Training Flowchart

Images Style Transfer Using CNN

Group Member:

Introduction

Transfer Photo

Content

& Style

Training

Data Source

Output

Demo

  • Style transfer is the technique of recomposing original images in the style of target images.
  • CNN can learn the style,content and generate new image.

Style Photo:

22 oil painting images

Content Photo:

80 thousands Photos of figures and still-lifes

Transfer Video

Original Video:

Content Image + Style Image =

Style Transfer Image

Content Video = Streaming Images + Stlye Image=

Style Transfer Video

Transfered Video:

Jiaming Nie

Ruojun Li

Yu Li

Yang Tao

Guangda Li

Loss Definition

Training Loss Plot

Minimize: Total Loss = α×Content Loss + β×Style Loss

Conclusion

  • VGG 16 was used to extract the feature and reconstruct images.
  • Minimize the total loss
  • Use Adam optimizer, learning rate = 0.001
  • Training the network takes very long time, a light CNN may be used for time reduction.
  • The tune of parameter α and β to modify the output

Thank you

Questions & Answer

프레지로 더욱 인상깊고 역동적인 프레젠테이션을 만들어 보세요