Introducing
Your new presentation assistant.
Refine, enhance, and tailor your content, source relevant images, and edit visuals quicker than ever before.
Trending searches
http://www.vixra.org/abs/1111.0062
arXiv:1101.5525 Rodejohann and Zhang
4 sqrt s sqrt d = s + d
http://www.arxiv.org/abs/1111.7232
1978 Harari Haut Weyers
vixra:1111.0062 A.R
arXiv:1111.7232 A.R.
Phys.Lett.B698:152-156,2011
Simple: set the yukawa coupling of the top quark to one, set the coupling of the up quark to zero, look for solutions (with any sign of the roots) doing the sequence
http://www.arxiv.org/abs/1101.5525
Phys.Lett. B78 (1978) 459 http://www.sciencedirect.com/science/article/pii/0370269378904859
top->bottom->charm->strange->up->down
1981 Y Koide
Yeah, strange, up, down is the original solution of Harari et al.
Phys.Rev.Lett. 47 (1981) 1241-1243 http://dx.doi.org/10.1103/PhysRevLett.47.1241
There are only five solutions
Does it sound useful? Or, at least, amusing?
Please share this presentation!
http://prezi.com/e2hba7tkygvj/koide-waterfall/
105.6583668(38) MeV
0.510998910(13) MeV
Inputs
4197.57589(15) MeV
174.10 GeV
All the basic scales of the Standard Model fermions (well, ask Carl Brannen for neutrinos) are already here!
1359.56428(5) MeV
3.64 GeV
92.274758(3) MeV
The last combination of the
Tevatron, arXiv:1207.1069, is
1776.96894(7) MeV
1.698 GeV
t
b
c
s
u
d
121.95 MeV
173.18 ± 0.94 GeV
173.263947(6) GeV
0 MeV
4.18 ± 0.03 GeV
1.275 ± 0.025 GeV
8.75 MeV
1776.82 ± 0.16 MeV
95 ± 5 MeV
173.07± 0.52 ± 0.72
Compare with the experimental measures from PDG 2013: agreement within one sigma.
THIS IS THE SCRATCHPAD... NOT PART OF THE PRESENTATION
x > 0 AND ...
( 1 + 9 sqrt(3) +x)^2/(196+2 sqrt(3)+x) = 3/2
1) THE LADDER
( 1- 8 sqrt(3) +x)^2/(196+2 sqrt(3)+x) = 3/2
x= 8 sqrt(3)
+
( -1 +8 sqrt(3) +x)^2/(196+2 sqrt(3)+x) = 3/2
(2 sqrt(3) + x)^2 / (8+x) = 3/2
0
( -1 -9 sqrt(3)+x)^2/(196+2 sqrt(3)+x) = 3/2
From this tree-level:
x=19+5 sqrt(3)
( 5+sqrt(3)+x)^2 / (20+2 sqrt(3)+x) =3/2
-
(-2 +x) ^2 /(8+x) = 3/ 2
-
0, (-1+ sqrt(3))^2, (1+sqrt(3))^2
im
( -3 +sqrt(3)+x)^2 / (20+2 sqrt(3)+x) =3/2
+
(+2 +x ) ^2 / (8+x) = 3/2
x=4
im
( 3- sqrt(3)+x)^2 / (20+2 sqrt(3)+x) =3/2
0
(-2 sqrt(3) +x)^2 / (8+x) = 3/2
( -5-sqrt(3)+x)^2 / (20+2 sqrt(3)+x) =3/2
x=-1+sqrt(3)
-
-
2) The WATERFALL
#!/usr/bin/python
from math import sqrt
class Masa(object):
def __init__(self, valor, origen, origenpos):
self.valor = valor
self.origen = origen
self.origenpos= origenpos
#bueno, menos esto, lo demas estilo fortran :-DDD
series=[[Masa(0,(0,0),[0,0]),Masa(1,(0,0),[0,0])]]
def soluciones(m1,m2):
#return [1]
respuestas=[]
B=m1+m2
for x in (+sqrt(m1),-sqrt(m1)):
for y in (+sqrt(m2),-sqrt(m2)):
A=x+y
D=3*(2*A**2-B)
if - 0.00001 < D < 0.00001 :
D=0
if A > -0.00000001:
respuestas.append((2*A)**2)
if D > 0 :
if 2*A+sqrt(D) > 0:
respuestas.append((2*A+sqrt(D))**2)
if 2*A-sqrt(D) > 0:
respuestas.append((2*A-sqrt(D))**2)
respuestas.sort()
anterior=respuestas[0]+234234354;
validas=[]
for x in respuestas:
if abs(x-anterior)>0.000001: validas.append(x)
anterior=x
if (m1,m2) == (1,0): validas=[validas[0]] #caso especial, para quitar degeneraciom x -- 1/x
return validas
#para ser mas precisos, hay y reducirlas si en algun caso
#difienren en menos de 1E8
for rango in range(2,6):
nuevas=[];
for serie in series:
for i in range(0,len(serie)):
for j in range(0,i):
if [i,j] > serie[len(serie)-1].origenpos: # control degeneracy
for m in soluciones(serie[i].valor,serie[j].valor):
nuevaserie=serie + [Masa(m,(serie[i].valor,serie[j].valor),[i,j])]
nuevas.append(nuevaserie)
series=nuevas
print len(series), len(series[0])
result=[]
for serie in series:
espectro= [ masa.valor for masa in serie]
normespectro=[ x/max(espectro)*174.10 for x in espectro]
normespectro.sort()
normespectro.reverse()
anterior=normespectro[0]+10000
degen=0
for x in normespectro:
if abs(x-anterior)<0.0000001: degen+=1
anterior=x
if degen==0:
result.append([normespectro, [masa.origenpos for masa in serie], [masa.origen for masa in serie] ])
result.sort()
print "no degeneradas", len(result)
for x in result: print x
174.10
765.08965
16
3.64
see also http://www.physicsforums.com/showthread.php?p=3989113
7.4641
1.698
top 19^2+3*25+190 sqrt(3)
bottom 16
charm 4+2 sqrt(3)
strange 4-2 sqrt(3)
up 0
d (4-2 sqrt(3))^2 / 4+2 sqrt(3)
.5359
.12195
0
0.03647
0.00875
tau
mu, pi
electron