Loading…
Transcript

Verhalten im Unendlichen

0<x<14,44723

0<y<6,9

f

= x

D

f

W

= y

a > 0

a < 0

x -> -∞

von II nach I von III nach I

von III nach IV von II nach IV

lim f(x) = -∞

x -> ∞

III

lim f(x) = ∞

II

n gerade n ungerade

IV

I

0,0006612672x

a

Definitions- und Wertebereich

5

n

6 Verhalten im Unendlichen

1,71973<x<4,31656

10,2512<x<15,6394

x<1,71973

4,31656<x<10,2512

15,6304<x

Monotonie

wenn:

f´(x) < 0

monoton fallend:

f´(x) > 0

f´´´(x)= 0.039676x -0.633189x + 2.14173

monoton steigend:

2

4 Monotonie

2

x = 0

x = 14.44723

1

x I y

0 0

1,53 2,67

4,2 1,81

8,57 5,87

10,58 6,9

14,45 0

Mathematica:

3

f´´(x)= 0.0132253x -0.316594x +2.14173x -3.83313

0 = 0.0006612672x⁵ - 0.0263828592x⁴ + 0.3569558021x³ - 1.9165654583x² + 3.9327139744x

f(x)=0

2

3

f´´(x)= 4*0.0033064x -0.105531x +1.07087x -3.83313x+3,93271

2

1 Nullstellen

4

3

f´(x)= 0.0033064x -0.105531x +1.07087x -3.83313x+3,93271

2

4

f´(x)= 5*0,0006612672x -4*0,0263828592x +3* 0,3569558021x -2*1,9165654583x+3,9327139744

3

2

Vorbereitung

0

= 52.7864 m²

f(x)dx

6

=

5

0

0.0006612672

4

6

0.0263828592

3

x - x + x - x + x

5

[ ]

0.3569558021

2

4

1.9165654583

3

3.9327139744

2

14.44723

bestimmtes Integral

6

5

0.0006612672

4

6

0.0263828592

3

F(x)= x - x + x - x + x + c

5

0.3569558021

2

4

1.9165654583

3

3.9327139744

2

Stammfunktion:

s= 21,77m

W3

0

f(2.84178) = 2.29214

f(7.50238) = 4.49768

f(13.5943) = 2.01512

W3

W2

W3

W2

x = 2.84178

x = 7.50238

x = 13.5943

W2

f´´´(x )= 0.662764

f´´´(x )=-0.375493

f´´´(x )= 0.866308

W1

s=

= 0

= 0

= 0

x = 2.84178

x = 7.50238

x = 13.5943

W1

4

3

1+(0.0033064x -0.105531x +1.07087x -3.83313x+3,93271)² dx

2

W1

Mathematica:

14,44723

W3

A= ?

a

W2

f´´´(x )= 0.662764

f´´´(x )=-0.375493

f´´´(x )= 0.866308

0 = 0.0132253x -0.316594x +2.14173x -3.83313

3

= 0

= 0

= 0

2

s=

W1

1+(f´(x))² dx

Mathematica:

f´´(x) = 0

b

notwendige Bedinung

f´´´(x) = 0

hinreichende Bedingung

s = ?

3 Wendepunkte

f(1.71973) = 2.6897

f(4.31656) = 1.80612

f(10.2512) = 6.95243

(f(15.6304) =-1.47243

E4

E3

x = 1.71973

x = 4.31656

x = 10.2512

(x = 15.6304)

E3

E2

0.576495 > 0 TIP

-0.900506 < 0 HOP

2.79908 < 0 TIP)

E4

f´´(x ) =

f´´(x ) =

f´´(x ) =

(f´´(x ) =

E2

E1

-1.01898 < 0

HOP

E4

E3

x = 1.71973

x = 4.31656

x = 10.2512

(x = 15.6304)

E2

0.576495 > 0 TIP

-0.900506 < 0 HOP

2.79908 < 0 TIP)

f´´(x ) =

f´´(x ) =

f´´(x ) =

(f´´(x ) =

E2

Mathematica: solve, x

E1

-1.01898 < 0

HOP

Mathematica:

4

0 = 0.003306336x -0.105531437x +1.070867406x -3.833130917x+3,9327139744

3

2

f´(x)=0

f´´(x)=0

notwendige Bedingung

hinreichende Bdingung

keine Symmetrie

f(x) = 0.0006612672x⁵ - 0.0263828592x⁴ + 0.3569558021x³ - 1.9165654583x² + 3.9327139744x

2 Extrema

f(x)=-f(-x)

f(x)=f(-x)

5 Symmetrie

Nullstellen

-0.026208=

5

1,81= 0*4,2 - 0,03*4,2 + 0,36*4,2 -1,92*4,2 + 3,93*4,2

4

3

2

Vorbereitung

Wendepunkte

Extrema

Symmetrie

0

x I y

0 0

1,53 2,67

4,2 1,81

8,57 5,87

10,58 6,9

14,45 0

x

y