Introducing
Your new presentation assistant.
Refine, enhance, and tailor your content, source relevant images, and edit visuals quicker than ever before.
Trending searches
Students will look closely at the parts of a thermometer. After placing a thermometer in hot and cold water, students will look at molecular model animations of the liquid in a thermometer. Students will then draw a model of the molecules of a thermometer after it has been placed in hot and then cold water.
Students add food coloring to hot and cold water to see whether heating or cooling affects the speed of water molecules. Students watch molecular model animations to see the effect of heating and cooling on the molecules of a liquid. Students will also draw their own molecular model.
Questions unit based on experiments, observations, and content learned throughout the unit. Questions are taken from activities and evaluations in lessons. Many questions use diagrams and pictures to help students recall what experiments were completed. Students will also be asked questions and have to apply knowledge they learned to other situations and content areas.
Students will see a demonstration with a metal ball and ring showing that heat causes atoms to spread a little further apart. They will also see that cooling a solid causes the atoms to get a little closer together. The same rules they discovered about liquids also apply to solids.
Students discuss the meaning of “chemistry” and “matter”. Students investigate a drop of water hanging from a dropper and drops of water beading up on wax paper. They also look at a molecular animation that models the motion of water molecules. Students are introduced to the idea that matter is made up of extremely tiny particles that are attracted to one another.
5th Grade
In This Unit
by Megan Vona
This lesson focuses on molecular motion in gases. Students compare the mass of a basketball when it is deflated and after it has been inflated. The inflated ball has the greater mass so students can conclude that gas is matter because it has mass and takes up space. Then students consider how heating and cooling affect molecular motion in gases. They dip the mouth of a bottle in detergent solution and observe a bubble growing and shrinking when the bottle is warmed and cooled. Students will learn that the attractions between gas molecules are so minimal that attractions can’t be used to explain the behavior of gases like it can for liquids and solids.