Introducing 

Prezi AI.

Your new presentation assistant.

Refine, enhance, and tailor your content, source relevant images, and edit visuals quicker than ever before.

Loading…
Transcript

Milk production systems in Uruguay

Model description

GHG associated with

dairy system

Statistical analysis

Variables with highest correlations with CF were:

milk production per ha ( r = - 0,78)

milk yield per cow ( r = - 0,81)

concentrate fed per cow ( r = - 0,71)

dry matter intake per cow ( r = - 0,69)

Cluster 1: low herd milk production due to a low milk yield per cow as well as a low stocking rate and low herd efficiency. The low milk yield per cow was due to a low dry matter inake per cow. As a result, high milk CF

Cluster 3: high milk prodcution due to a high milk yield per cow and high stocking rate. Herd efficiency was high as well. These farms used feed management practices with a higher forage intake per cow and a high proportion of concentrate in diets, resulting in the lowest milk CF.

Thank you

Method

Data:

Data collected from 24 actual dairy farms located in SW Uruguay

Farms were not randomly selected, quality data were a criterion for inclusion

Information was collected through a semi structured questionnaire and interviews with references

Methane: enteric fermentation

Methane: manure

Nitrous oxide: soil

We assumed that 10% of orine and dung was excreted at the milking shed and that all farms had uncovered anaerobic lagoon system,

average daily feed intake expressed as gross enegy intake (pastures + concentrate) multiplied by the methane conversion factor fro IPCC (2006) and Dini(2012): Ym=6.5 %

Other emissions...

We also considered emissions from diesel, electricity,

extraction of raw materials/manufacture/transport

(fertilizers and pesticides)

Milk carbon footprint

La HC se expresa por litro de leche corregido

(grasa y proteína) cuantificando todas las entradas

y salidas de las emisiones de GEI y convirtiendo

las mismas en CO2 equivalente

In fact, most of the farms had that system

Direct emissions of N2O from the soil and stored manure were also estimated following IPCC guidelines (2006b)

synthetic N fertilizer: 0.01 kg N20-N per kg N applied

N excreted: 0.02 kg N20-N per kg N excreted

N excresions = total N feed intake – N in milk and retained in animals

Model used to quantify milk CF

Feed supply

Feed requirements of all animals were

calculated using the AFRC system

(AFRC,1993)

Define a pasture-crop rotation and production

Define concentrate consumption

Estimate pasture production from the difference

of herd requirements and concentrate consumption

Inputs:

milk production

different herd categories

live weight

pregnacy status

Dairy system model

(Comisión InterCREA de Producción Intensiva de Leche, 2004)

The milk CF for each dairy farm was determined using a software tool called CIPIL

The model used an excel spreadsheet format to simulate biological, physical and environmental processes of a dairy farm over a 12 month period.

The model integrates integrates animal and forage production activities linked and bounded by different contrainsts

Statistical analysis

correlation analysis between CF and 10 possible explanatory variables

simple regression analysis

multivariate analysis: principal components analysis (PCA)

and cluster analysis

INFOSTAT software (2012)

Functional unit and system boundaries

System boundaries: cradle to farm-gate

We followed the methodology of the International Dairy Federation (IDF, 2010)

Funcional unit: 1 kg fat (4%) and protein (3,3%) corrected milk

Allocation between milk and meat was done using the biological method

Results and discusion

Objective

Multivariate analysis

Cluster analysis

2 B

Multivariate analysis

Grupo 3

Principal components analysis

Grupo 2

2 A

Grupo 2

Cluster analysis

Grupo 1

A cluster analysis was used to study the distribution of farms when placed into homogenous groups

We used the same 8 variables that we used in the PCA:

milk production per ha

milk production per cow

stocking rate

herd efficiency

concentrate per cow

dry matter intake per cow

N excreted per ha

Milk CF

Relationship between CF and milk production per ha

Some management variables were strongly correlated with one another, which made interpretation of relationships between individual variables and CF difficult.

PCA allowed the transformation of a set of correlated explanatory variables to new variables, the so-called

principal components

Improving milk production decreases CF if this production is associated with high yielding cows with

greater feed efficiency.

8 variables explained 85.6% of the total variance in the data set

1,09

0,96

0,92

Relationship between CF and milk yield per cow

Milk CF for each cluster of farms broken

by source emissions (%)

1,09

0,96

0,92

Results were similiar to studies from Heriksson et al. 2011, Iribarren et al. 2011, Lovett et al. 2006, Casey y Holden 2005

The exponential decline is a result of fewer cows being maintained to produce a given amount of milk, so maintaing more animals per unit of milk produced increases the CF

Enteric fermentation produced the greatest contribution

Soil carbon sequestration

Simulation of the inclusion of C sequestration to the average results from:

Díaz y Durán, 2011

Relationship betweeen CF and milk yield per cow

Correlation analysis

With these variables we did regression analysis

Characteristics of the dairy farms

Internacional studies on pastures systems:

(otro FE y asig.)

New Zealand (Flysjo et al., 2011): 1,0 CO2 eq/ kg LCGP

New Zealand (Basset- Mens et al., 2009): 0,93 kg CO2 eq/ LCGP

Irland (Lovett et al., 2006): 1,0 a 1,2 kg CO2 eq/ kg LCGP

Irland (Casey y Holden, 2005): 0,92 a 1,51 kg CO2 eq/ kg LCGP

Spain (Hospido et al., 2003): 0,84 kg CO2 eq/ kg LCGP

Uruguay sin asig. 1,14

Objective

Estimate the milk carbon footprint produced on 24 uruguayan dairy

farms and to evaluate the impact of management practices on this

footprint using multivariate analysis

Conclusiones

Practices to reduce milk carbon footprint on grazing dairy farms in southern Uruguay: case studies

Introduction

The variation in production data found among the studied dairy farms

suggested that the CF of uruguayan milk production varies by at least

+/- 10%.

Farms with more efficient production in terms of greater milk yield

and a greater ratio of milking cows to total stock provided a low

milk CF.

Lower CF was also associated with higher feed dry matter intake

per cow using and appropiate mixture of pasture and concentrate

feeds

huella de carbono:

Emisiones de GEI que se producen durante toda la vida de un producto o servicio desde la extracción de la materia prima y la manufactura para su uso, utilización final, reciclado o disposición final

Países desarrollados

(Anexo I P. Kyoto)

realizan campañas

conscientizando a sus

consumidores sobre CC

A su vez estos son

los países donde Uruguay

coloca productos como

carne y leche.

The CF from agriculture products

Food miles (´90)

Environmental competitiveness

Livestock's Long Shadow

(Steinfeld et al. 2006)

estimates that livestock are responsible

for 18 percent of greenhouse gas

emissions

A survey done to consumers from TESCO supermarket (2008):

Surge preocupación en consumidores de países

industrializados (firmantes de Anexo I, P. Kyoto)

por conocer las emisiones de GEI producidas por

los alimentos

inicialmente impulsado

en el Reino Unido

sustitución de food miles

por huella de carbono

Huella de carbono

Kyoto Protocol (1997)

places a heavier burden

on developed nations

under the principle of

common but differentiated responsabilities

emisiones de GEI que se producen durante toda la vida de un producto o servicio, desde la extracción de materia bruta, manufactura, utilización, reciclado o disposición final

(Carbon Trust, 2013)

forma parte ACV

antes de esto una introduccion de los factores de variacion en la HC

La HC de la leche según características

de los sistemas productivos

Todos estos trabajos resaltan la

importancia de realizar un análisis de tipo global para poder realizar comparaciones entre sistemas productivos y entre países.

Relación entre productividad por ha

y la huella de carbono para 10 predios lecheros

Casey y Holden, 2005

Relación entre la productividad por vaca y la huella de carbono

para 10 predios lecheros

Casey y Holden, 2005

Estrategias de mitigación de GEI en sistemas pastoriles

a mismo tipo de sistema hay disminución de la HC solo por ajustar la eficiencia biológica del rodeo o la calidad de la comida

Beukes et al. 2010

Estudio comparativo

Rotz et al. 2009

Pastoril vs confinado

Flysjo et al, 2011

En el sistema confinado pesan las emisiones

asociadas al alimento y al manejo del estiércol

Flysjo et al. 2011

Sistema confinado vs pastoril

Pastoril vs Confinado

Los resultados de estos dos trabajos

muestran que la huella de carbono de la

leche a nivel de predio es menor

en países desarrollados en comparación

a países en desarrollo.

Las diferencias se deben en gran medida al nivel de intensificación

( leche por vaca y por ha)

Relación entre la productividad de leche

por ha y la HC para distintos países

Hagemann et al. 2011

Relación entre la producción de leche por

vaca masa y la HC para distintos países

Hagemann et al. 2011

Hagemann et al (2011), para distintos países

alrededor del mundo, muestra variaciones

muy importantes según los sistemas de

producción y los recursos disponibles en

distintas regiones del mundo

El sector global lechero contribuye

un 4% a las emisiones globales totales

de gases efecto invernadero

Variaciones regionales de HC están

explicadas principalmente por las

diferencias en los sistemas productivos

FAO, 2010

¿Distintos sistemas productivos (pastoril vs confinado) presentan HC de la leche contrastantes?

Uruguay situation

Uruguay: is a non- anex I country in the Kyoto Protocol

with no legally binding targets, but....

large amounts of commodities

are exported and there is a

current international concern

of consumers for product´s CF

In Uruguay agriculture contributes about 80% of the total GHG emissions

In the last decade the uruguayan milk production has increased 4 % per year

MGAP,2012

92% of national methane emissions are produced by the agriculture sector, enteric fermentation is responsible for 87% of the emissiones

Diario El País, 17/06/13

METANO

DIEA, 2012

The increase is explained by intensification (milk/cow)

99% of nitrous oxide comes from agriculture sector, 61% of the emissions are from cattle

OXIDO NITROSO

MVOTMA, 2010

Most of dairy farms in Uruguay are located in the SW

Diferencias en metodologías

70% of dairy producs are

exported

DIEA, 2012

En el 2010 se edita una guía de cálculo de la HC, ésta es internacionalmente aceptada (IDF, 2010)

Las publicaciones anteriores al 2010 difieren entre sí en aspectos metodológicos como:

límites del sistemas

unidad funcional

factores de emisión

asignación de co-productos

Por lo cual, los HC de distintos países/publicaciones no son comparables para un mismo producto

Para valores de referencia hay que hacerlo sobre metodologías de calculo comprables

A los efectos de nuestro trabajo la referencia útil es Flysjo et al. (2011) por utilizar la guía IDF (2010).

Master thesis

Facultad de Agronomía

UDELAR

Ing. Agr. (MSc) Carolina Lizarralde

Ing. Agr. (PhD) Valentin Picasso

Ing. (PhD) Alan Rotz

Ing. Agr. (PhD) Monica Cadenazzi

Ing. Agr. (PhD) Laura Astigarraga

Learn more about creating dynamic, engaging presentations with Prezi