A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem cotidiana: agrupamento, classe, coleção. Por exemplo:
Conjunto das letras maiúsculas do alfabeto;
Conjunto dos números inteiros pares;
Conjunto dos dias da semana;
Conjunto dos Presidentes da República do Brasil.
Cada membro ou objeto que entra na formação do conjunto.
Assim:
V, I, C, H, E são elementos do primeiro conjunto acima;
2, 4, 6 são elementos do segundo; Sábado, Domingo do terceiro; e
FHC, Lula do último.
Pertinência entre elemento e conjunto
Notação
Conjunto: Representado, de forma geral, por uma letra maiúscula A, B, C, …
Elemento: Por uma letra minúscula a, b, c, x, y, z, …
Pertinência: Sejam A um conjunto e x um elemento. Se x é um elemento de A (ou x pertence a A) indicamos por:
x pertence ao conjunto A
Caso contrário, ou seja, se x não é um elemento de A (ou x não pertence a A) escrevemos:
Representações de Conjuntos
a) Extensão ou Enumeração
Quando o conjunto é representado por uma listagem ou enumeração de seus elementos. Devem ser escritos entre chaves e separados por vírgula ou ponto-e-vírgula.
Exemplos:
Conjunto dos nomes de meus filhos: {Larissa, Júnior, Thiago, Juliana, Fabiana};
Conjunto dos meses com menos de 31 dias: {fevereiro, abril, junho, setembro, novembro};
Conjunto dos números pares inteiros maiores do que 8 e menores do que 22: {10; 12; 14; 16; 18; 20}.
Observações:
Na representação por extensão cada elemento deve ser escrito apenas uma vez;
É uma boa prática adotar a separação dos elementos em conjuntos numéricos como sendo o ponto-e-vírgula, para evitar confusões com as casas decimais: {2;3;4} e {2,3;4};
Esta representação pode, também, ser adotada para conjuntos infinitos em que se evidencia a lei de formação de seus elementos e colocando-se reticências no final: {2, 4, 6, 8, 10, …};
Representação semelhante pode ser adotada para conjuntos finitos com um grande número de elementos: {0, 1, 2, 3, …, 100}.
CONJUNTOS
Por exemplo, V é um elemento do conjunto das letras maiúsculas do alfabeto, ou seja, V pertence àquele conjunto. Enquanto que v não pertence.
Como se vê são conceitos intuitivos e que se supõe sejam entendidos (evidentes) por todos