Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Particulas Subatomicas

No description
by

Marco C.

on 10 February 2013

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Particulas Subatomicas

EL ELECTRON EL PROTON Y EL NUCLEO Desde principios de 1900 ya se conocían dos características de los átomos: que contienen electrones y que son eléctricamente neutros. Para que un átomo sea neutro debe contener el mismo número de cargas positivas y negativas. EL NEUTRON El modelo de Rutherford de la estructura atómica dejaba un importante problema sin resolver.
Se sabía que el hidrógeno, el átomo más sencillo, contenía sólo un protón, y que el átomo de helio contenía dos protones. Por tanto, la relación entre la masa de un átomo de helio y un átomo de hidrógeno debería ser 2: l. (Debido a que los electrones son mucho más ligeros que los protones, se puede ignorar su contribución a la masa atómica.) Sin embargo, en realidad la relación es 4: 1. ESTRUCTURA ATOMICA PARTICULAS SUBATOMICAS Un átomo se define como la unidad básica de un elemento que puede intervenir en una combinación química. Dalton describió un átomo como una partícula extremadamente pequeña e indivisible. Sin embargo, una serie de investigaciones iniciadas alrededor de 1850, y que continuaron hasta el siglo XX, demostraron claramente que los átomos tienen una estructura interna, es decir, que están formados por partículas aún más pequeñas, llamadas partículas subatómicas. Para investigar este fenómeno se utilizó un tubo de rayos catódicos, precursor de los tubos utilizados en los televisores. Consta de un tubo de vidrio del cual se ha evacuado casi todo el aire. Si se colocan dos placas metálicas y se conectan a una fuente de alto voltaje, la placa con carga negativa, llamada cátodo, emite un rayo invisible. Este rayo catódico se dirige hacia la placa con carga positiva, llamada ánodo, que pasa por una perforación y continúa su trayectoria hasta el otro extremo del tubo. Cuando dicho rayo alcanza la superficie, recubierta de una manera especial, produce una fuerte fluorescencia o luz brillante. Debido a que los rayos catódicos son atraídos por la placa con carga positiva y repelidos por la placa con carga negativa, deben consistir en partículas con carga negativa. Actualmente, estas partículas con carga negativa se conocen como electrones. El físico inglés J. J. Thomson utilizó un tubo de rayos catódicos para determinar la relación entre la carga eléctrica y la masa de un electrón. El número que obtuvo fue de - 1.76 X 108 C/g. R. A. Millikan, al aplicar sus conocimientos sobre electrostática encontró que la carga de un electrón es de - 1.6022 X 10- 19 C. A partir de estos datos calculó la masa de un electrón: En la década de 1890, muchos científicos estaban interesados en el estudio de la radiación, la emisión y transmisión de la energía a través del espacio en forma de ondas. En 1910, un físico neozelandés, Ernest Rutherford, que estudió con Thomson en la Universidad de Cambridge, utilizó partículas alfa para demostrar la estructura de los átomos.
Junto con su colega Hans Geiger y un estudiante de licenciatura llamado Ernest Marsden, Rutherford efectuó una serie de experimentos utilizando láminas muy delgadas de oro y de otros metales, como blanco de partículas alfa provenientes de una fuente radiactiva. Observaron que la mayoría de las partículas atravesaban la lámina sin desviarse, o bien con una ligera desviación. De cuando en cuando, algunas partículas alfa eran dispersadas (o desviadas) de su trayectoria con un gran ángulo. En algunos casos, las partículas alfa regresaban por la misma trayectoria hacia la fuente radiactiva. Rutherford propuso que las cargas positivas de los átomos estaban concentradas en un denso conglomerado central dentro del átomo, que llamó núcleo. Cuando una partícula alfa pasaba cerca del núcleo en el experimento, actuaba sobre ella una gran fuerza de repulsión, lo que originaba una gran desviación. Además, cuando una partícula alfa incidía directamente sobre el núcleo, experimentaba una repulsión tan grande que su trayectoria se invertía por completo. Las partículas del núcleo que tienen carga positiva reciben el nombre de protones. En otros experimentos se encontró que los protones tienen la misma cantidad de carga que los electrones y que su masa es de 1.67262 X 10- 24 g, aproximadamente 1 840 veces la masa
del electrón con carga opuesta. Rutherford y otros investigadores habían propuesto que debería existir otro tipo de partícula subatómica en el núcleo, hecho que el físico inglés James Chadwick probó en 1932. Cuando Chadwick bombardeó una delgada lámina de berilio con partículas alfa, el metal emitió una radiación de muy alta energía, similar a los rayos y (Gamma). Experimentos posteriores demostraron que esos rayos en realidad constan de un tercer tipo de partículas subatómicas, que Chadwick llamó neutrones, debido a que se demostró que eran partículas eléctricamente neutras con una masa ligeramente mayor que la masa de los protones. El misterio de la relación de las masas ahora se podía explicar. En el núcleo de helio existen dos protones y dos neutrones, en tanto que en el núcleo de hidrógeno hay sólo un protón y no hay neutrones; por lo tanto, la relación es 4: 1.
Full transcript