Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Microscopio

Investigación
by

JENNY YULIANY NIÑO

on 14 October 2012

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Microscopio

El Microscopio Historia Tipos de Microscopios Definición Microscopio Compuesto Microscopio de Luz Ultravioleta Microscopio Simple Microscopio de fluorescencia Fue inventado en los años de
1610 por Galileo según
los Italianos, Aunque los Holandeses dicen que fue creado por Zacharias Janssen en 1590. Microscopio Óptico O MICROSCOPIO DE LUZ Instrumento que permite observar objetos demasiado pequeños para la vista humana Es aquel que usa un solo lente de aumento este es el más básico el ejemplo más común es el de la lupa

El sistema mecánico está constituido por una palanca que sirve para sostener, elevar y detener los instrumentos a observar.
El sistema de iluminación comprende un conjunto de instrumentos, dispuestos de tal manera que producen las ranuras de luz.
El sistema óptico comprende las partes del microscopio que permiten un aumento de los objetos que se pretenden observar mediante filtros llamados "de anti gel subsecuente". La imagen en el microscopio de luz ultravioleta depende de la absorción de esa luz por las moléculas de la muestra. La fuente de luz ultravioleta tiene una longitud de onda de 200 nm, por lo tanto puede alcanzar una resolución de 100 nm. La microscopia ultravioleta no es muy diferente del funcionamiento de un espectrofotómetro pero sus resultados son registrados en fotografías. La muestra no se puede observar directamente a través del ocular porque la luz ultravioleta puede dañar la retina. El método sirve para detectar ácidos nucleicos, proteínas que contienen determinados aminoácidos. Mediante longitudes de ondas específicas para la iluminación se puede obtener mediciones espectro fotométricas para cuantificar el ADN y el RNA de cada célula.

El microscopio de luz ultravioleta utiliza el rango ultravioleta del espectro luminoso en lugar del rango visible, bien para aumentar la resolución con una longitud de onda menor o para mejorar el detalle absorbiendo selectivamente distintas longitudes de onda de la banda ultravioleta. Dado que el vidrio no transmite las longitudes de onda más cortas de la luz ultravioleta, los elementos ópticos de estos microscopios están hechos con cuarzo, fluorita o sistemas de espejos aluminizados. Además, dado que la radiación ultravioleta es invisible, la imagen se muestra con fosforescencia (véase Luminiscencia), en fotografía o con un escáner electrónico. El microscopio de luz ultravioleta se utiliza en la investigación científica. El microscopio de fluorescencia es una variación del microscopio de luz ultravioleta en el que los objetos son iluminados por rayos de una determinada longitud de onda. La imagen observada es el resultado de la radiación electromagnética emitida por las moléculas que han absorbido la excitación primaria y remitido una luz con mayor longitud de onda. Para dejar pasar sólo la emisión secundaria deseada, se deben colocar filtros apropiados debajo del condensador y encima del objetivo. Se usa para detectar sustancias con auto fluorescencia (vitamina A) o sustancias marcadas con fluoro cromos. Este se encuentra basado en lentes ópticos y compuesto por: 1 * Ocular: lente situada cerca del ojo del observador
2 * Objetivo: lente situada en el revolver. Amplía la imagen,
3 * Condensador: lente que concentra los rayos luminosos sobre la preparación.
4 * Diafragma: regula la cantidad de luz que llega al condensador.
5 * Foco: dirige los rayos luminosos hacia el condensador.
6 * Tubo: es la cámara oscura que porta el ocular y los objetivos.
7 * Revólver: Este sistema porta los objetivos de diferentes aumentos, que rota para poder utilizar uno u otro, alineándolos con el ocular.
8 * Tornillos macro y micrométrico: Son tornillos de enfoque, mueven la platina o el tubo hacia arriba y hacia abajo. El macro métrico lo hace de forma rápida y el micrométrico de forma lenta,
9 *Platina: Es una plataforma horizontal con un orificio central, sobre el que se coloca la preparación,
10 *Brazo: Es la estructura que sujeta el tubo, la platina y los tornillos de enfoque asociados al tubo o a la platina. La unión con la base puede ser articulada o fija.
11 * Base o pie: Es la parte inferior del microscopio que permite el sostén estable del mismo. Este tiene más de un lente objetivo, este se utiliza para objetos transparentes, este se encuentra conformado por tres sistemas. 1st step Finished 2nd step Spark Last step Start (cc) image by nuonsolarteam on Flickr El microscopio petrográfico o de polarización se utiliza para identificar y estimar cuantitativamente los componentes minerales de las rocas. Cuenta con un prisma de Nicol u otro tipo de dispositivo para polarizar la luz que pasa a través del espécimen examinado (véase Óptica: Polarización de la luz). Otro prisma Nicol o analizador que determina la polarización de la luz que ha pasado a través del espécimen. El microscopio tiene un soporte giratorio que indica el cambio de polarización acusado por el espécimen. Microscopio Petrográfico El microscopio de campo oscuro utiliza un haz enfocado de luz muy intensa en forma de un cono hueco concentrado sobre el espécimen. El objeto iluminado dispersa la luz y se hace así visible contra el fondo oscuro que tiene detrás, como las partículas de polvo iluminadas por un rayo de sol que se cuela en una habitación cerrada. Por ello las porciones transparentes del espécimen quedan oscuras, mientras que las superficies y partículas se ven brillantes, por la luz que reciben y dispersan en todas las direcciones, incluida la del eje óptico que conecta el espécimen con la pupila del observador. Esta forma de iluminación se utiliza para analizar elementos biológicos transparentes y sin pigmentar, invisibles con iluminación normal, sin fijar la muestra, es decir, sin matarla. También es bastante utilizado en la observación de muestras metalográficas para la observación de detalles en superficies con alta reflectancia. Microscopio en Campo Oscuro El microscopio de contraste de fases permite observar células sin colorear y resulta especialmente útil para células vivas.1 Este aprovecha las pequeñas diferencias de los índices de refracción en las distintas partes de una célula y en distintas partes de una muestra de tejido. La luz que pasa por regiones de mayor índice de refracción experimenta una deflexión y queda fuera de fase con respecto al haz principal de ondas de luz que pasaron la muestra. Aparea otras longitudes de onda fuera de fase por medio de una serie de anillos ópticos del objetivo y del condensador, anula la amplitud de la porción fuera de fase inicial del haz de luz y produce un contraste útil sobre la imagen. Las partes oscuras de la imagen corresponden a las porciones densas del espécimen; las partes claras de la imagen corresponden a porciones menos densas. Microscopio de contraste de fases El microscopio petrográfico, microscopio polarizador o de luz polarizada es un microscopio óptico al que se le han añadido dos polarizadores (uno entre el condensador y la muestra y el otro entre la muestra y el observador). El material que se usa para los polarizadores son prismas de Nicol o prismas de Glan-Thompson (ambos de calcita), que dejan pasar únicamente la luz que vibra en un único plano (luz polarizada). Esta luz produce en el campo del microscopio claridad u oscuridad, según que los dos nícoles estén paralelos o cruzados. Microscopio de luz polarizada El microscopio confocal es un microscopio que emplea una técnica óptica de imagen para incrementar el contraste y/o reconstruir imágenes tridimensionales utilizando un "pinhole" espacial (colimador de orificio delimitante) para eliminar la luz desenfocada o destellos de la lente en especímenes que son más gruesos que el plano focal.1 El pinhole es una apertura localizada delante del fotomultiplicador que evita el pasaje de fluorescencia de las regiones de la muestra que no están en foco, la luz que proviene de regiones localizadas por encima o por debajo del plano focal no converge en el pinhole y no es detectada por el fotomultiplicador Microscopio confocal Un microscopio electrónico de transmisión (TEM, por sus siglas en inglés, o MET, en español) es un microscopio que utiliza un haz de electrones para visualizar un objeto, debido a que la potencia amplificadora de un microscopio óptico está limitada por la longitud de onda de la luz visible. Lo característico de este microscopio es el uso de una muestra ultrafina y que la imagen se obtenga de los electrones que atraviesan la muestra. Microscopio electrónico de transmisión es aquel que utiliza un haz de electrones en lugar de un haz de luz para formar una imagen. Tiene una gran profundidad de campo, la cual permite que se enfoque a la vez una gran parte de la muestra. También produce imágenes de alta resolución, que significa que características espacialmente cercanas en la muestra pueden ser examinadas a una alta magnificación. La preparación de las muestras es relativamente fácil pues la mayoría de SEMs sólo requieren que estas sean conductoras.

En el microscopio electrónico de barrido la muestra generalmente es recubierta con una capa de carbón o una capa delgada de un metal como el oro para darle propiedades conductoras a la muestra. Posteriormente es barrida con los electrones acelerados que viajan a través del cañón Microscopio electrónico de barrido Un microscopio electrónico es aquél que utiliza electrones en lugar de fotones o luz visible para formar imágenes de objetos diminutos. Los microscopios electrónicos permiten alcanzar ampliaciones hasta 5000 veces más potentes que los mejores microscopios ópticos, debido a que la longitud de onda de los electrones es mucho menor que la de los fotones "visibles".

El primer microscopio electrónico fue diseñado por Ernst Ruska y Max Knoll entre 1925 y 1930, quiénes se basaron en los estudios de Louis-Victor de Broglie acerca de las propiedades ondulatorias de los electrones.

Un microscopio electrónico, como el de la imagen, funciona con un haz de electrones generados por un cañón electrónico, acelerados por un alto voltaje y focalizados por medio de lentes magnéticas (todo ello al alto vacío ya que los electrones son absorbidos por el aire). Los electrones atraviesan la muestra (debidamente deshidratada) y la amplificación se produce por un conjunto de lentes magnéticas que forman una imagen sobre una placa fotográfica o sobre una pantalla sensible al impacto de los electrones que transfiere la imagen formada a la pantalla de un ordenador. Los microscopios electrónicos sólo se pueden ver en blanco y negro, puesto que no utilizan la luz, pero se le pueden dar colores en el ordenador. Como se puede apreciar, su funcionamiento es semejante a un monitor monocromático. Microscopio electrónico La microscopía de iones en campo (FIM) es una técnica analítica empleada en ciencia de materiales. El microscopio de iones en campo es una variedad de microscopio que puede ser usado para visualizar la ordenación de los átomos que forman la superficie de la punta afilada de una aguja de metal. Fue la primera técnica con la que se consiguió resolver espacialmente átomos individuales. La técnica fue desarrollada por Erwin Müller. En 1951 se publicaron por primera vez imágenes de estructuras atómicas de tungsteno en la revista Zeitschrift für Physik.

En la FIM, se produce una aguja de metal afilada y se coloca en una cámara de ultra alto vacío, que después se llena con un gas visualizador tal como el helio o el neón. La aguja se enfría hasta alcanzar temperaturas criogénicas (20-100 K). Luego se aplica un voltaje positivo que va de 5.000 a 10.000 voltios sobre la punta. Los átomos de gas absorbidos por la punta se ven ionizados por el fuerte campo eléctrico que existe en las proximidades de ella. La curvatura de la superficie cercana a la punta provoca una magnetización natural; los iones son repelidos bruscamente en dirección Microscopio de iones en campo Un microscopio de sonda de barrido (también llamado SPM por sus siglas en inglés Scanning Probe Microscopy) es aquel que tiene el transmisor en la parte exequimal del lente (Objetivo 4x). Este microscopio electrónico utiliza una sonda que recorre la superficie del objeto a estudiar.e Microscopio de sonda de barrido Un microscopio de efecto túnel (STM por sus siglas en inglés) es un instrumento para tomar imágenes de superficies a nivel atómico. Su desarrollo en 1981 hizo ganar a sus inventores, Gerd Binnig y Heinrich Rohrer (de IBM Zürich), el Premio Nobel de Física en 1986.1 2 Para un STM, se considera que una buena resolución es 0.1 nm de resolución lateral y 0.01 nm de resolución de profundidad.3 Con esta resolución, los átomos individuales dentro de los materiales son rutinariamente visualizados y manipulados. El STM puede ser usado no solo en ultra alto vacío, sino que también en aire, agua, y varios otros líquidos o gases del ambiente, y a temperaturas que abarcan un rango desde casi cero Kelvin hasta unos pocos cientos de grados Celsius.4 Microscopio de efecto túnel El Microscopio de fuerza atómica (AFM, de sus siglas en inglés Atomic Force Microscope) es un instrumento mecano-óptico capaz de detectar fuerzas del orden de los piconewtons. Al rastrear una muestra, es capaz de registrar continuamente su topografía mediante una sonda o punta afilada de forma piramidal o cónica. La sonda va acoplada a un listón o palanca microscópica muy flexible de sólo unos 200 m. El microscopio de fuerza atómica ha sido esencial en el desarrollo de la nanotecnología, para la caracterización y visualización de muestras a dimensiones nanométricas (1 x 10^{-9} m = 1 nm). Microscopio de fuerza atómica La microscopía virtual es un método de revisión y transmisión de imágenes provenientes de un microscopio a través de redes informáticas. Esto permite la visualización independiente de las imágenes por grandes números de personas en distintos lugares. Involucra la unión de tecnologías ópticas microscópicas y digitales.1

El estudio a distancia de las imágenes se puede denominar telehistología, telecitología o telepatología dinámica virtual dependiendo del tipo de información biológica. Mediante un microscopio virtual, una persona localizada en cualquier lugar del mundo controlará el área de estudio del preparado microscópico (lámina virtual), y analizará los tejidos o células en el aumento que desee con el simple uso del periféricos como el ratón con unos pocos clics y sin factores horarios intervinientes. Microscopía virtual
Microscopio óptico
Microscopio simple
Microscopio compuesto
Microscopio de luz ultravioleta
Microscopio de fluorescencia
Microscopio petrográfico
Microscopio en campo oscuro
Microscopio de contraste de fase
Microscopio de luz polarizada
Microscopio confocal
Microscopio electrónico
Microscopio electrónico de transmisión
Microscopio electrónico de barrido
Microscopio de iones en campo
Microscopio de sonda de barrido
Microscopio de efecto túnel
Microscopio de fuerza atómica
Microscopio virtual Tipos de Microscopios GRACIAS POR SU ATENCIÓN Partes del microscopio

Lente ocular.
Cabezal
Platina.
Lentes ópticos.
Condensador.
Revólver.
Diafragma.
Pinzas de la platina.
Base o pie.
Lámpara.
Tornillo micrométrico(ajuste fino).
Tornillo macrométrico(ajuste de cremallera).
Brazo o columna.
Tubo ocular Partes de un Microscopio
Full transcript