Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Pruebas No Parametricas.

Definiciones de las Pruebas No Parametricas.

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Pruebas No Parametricas.

Pruebas No Parametricas. Cuando se analizan datos medidos por una variable cuantitativa continua, las pruebas estadísticas de estimación y contraste frecuentemente empleadas se basan en suponer que se ha obtenido una muestra aleatoria de una distribución de probabilidad de tipo normal o de Gauss. Definición.
Se denominan pruebas no paramétricas aquellas
que no presuponen una distribución de probabilidad
para los datos, por ello se conocen también como de
distribución libre (distribution free). Pero en muchas ocasiones esta suposición no resulta válida, y en otras la sospecha de que no sea adecuada no resulta fácil de comprobar, por tratarse de muestras pequeñas. En estos casos disponemos de dos posibles mecanismos: los datos se pueden transformar de tal manera que sigan una distribución normal, o bien se puede acudir a pruebas estadísticas que no se basan en ninguna suposición en cuanto a la distribución de probabilidad a partir de la que fueron obtenidos los datos. Prueba χ² de Pearson
Prueba binomial
Prueba de Anderson-Darling
Prueba de Cochran
Prueba de Cohen kappa
Prueba de Fisher
Prueba de Friedman
Prueba de Kendall
Prueba de Kolmogórov-Smirnov
Prueba de Kruskal-Wallis
Prueba de Kuiper
Prueba de Mann-Whitney o prueba de Wilcoxon
Prueba de McNemar
Prueba de la mediana
Prueba de Siegel-Tukey
Coeficiente de correlación de Spearman
Tablas de contingencia
Prueba de Wald-Wolfowitz
Prueba de los signos de Wilcoxon Prueba χx² de Pearson.
Mide la discrepancia entre una distribución observada y otra teórica (bondad de ajuste), indicando en qué medida las diferencias existentes entre ambas, de haberlas, se deben al azar en el contraste de hipótesis. También se utiliza para probar la independencia de dos variables entre sí, mediante la presentación de los datos en tablas de contingencia. Prueba de la mediana.
podemos considerar un caso especial de la prueba de chi-cuadrado,
pues se basa en esta última. Su objetivo es comparar las medianas
de dos muestras y determinar si pertencen a la misma población o no.

Para ello, se calcula la mediana de todos los datos conjuntamente. Después, se divide cada muestra en dos subgrupos: uno para aquellos datos que se sitúen por encima de la mediana y otro para los que se sitúen por debajo. Prueba de Kolmogórov-Smirnov.

Se utiliza para determinar la bondad de ajuste de dos distribuciones de probabilidad entre sí.

En el caso de que queramos verificar la normalidad de una distribución, la prueba de Lilliefors conlleva algunas mejoras con respecto a la de Kolmogórov-Smirnov; y, en general, el test de Shapiro–Wilk o la prueba de Anderson-Darling son alternativas más potentes. Prueba de Friedman.

Desarrollado por el economista Milton Friedman. Equivalente a la prueba ANOVA para medidas repetidas en la versión no paramétrica, el método consiste en ordenar los datos por filas o bloques, reemplazándolos por su respectivo orden. Al ordenarlos, debemos considerar la existencia de datos idénticos. Prueba de los signos de Wilcoxon.

para comparar la mediana de dos muestras relacionadas y determinar si existen diferencias entre ellas. Se utiliza como alternativa a la prueba t de Student cuando no se puede suponer la normalidad de dichas muestras. Debe su nombre a Frank Wilcoxon, que la publicó en 1945.

Se utiliza cuando la variable subyacente es continua pero presupone ningún tipo de distribución particular. Coeficiente de correlación de Spearman.

Es una medida de la correlación (la asociación o interdependencia) entre dos variables aleatorias continuas. Para calcular , los datos son ordenados y reemplazados por su respectivo orden. Prueba de Anderson-Darling.

Si los datos de una muestra provienen de una distribución específica. La fórmula para el estadístico A determina si los datos (observar que los datos se deben ordenar) vienen de una distribución con función acumulativa F.
Full transcript