Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Probabilidad Clasica

No description
by

Julian Badillo

on 16 May 2014

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Probabilidad Clasica

EJEMPLO
: ¿Cuál es la probabilidad de obtener un número mayor que 3, en el lanzamiento de un dado? Si E: 4, 5, 6, entonces el número de resultados favorables es n (E) = 3.
Si S: 1, 2, 3, 4, 5, 6, entonces el número total de resultados posibles es (S) = 6.
Por lo tanto:
Probabilidad Frecuencial
La probabilidad frecuencial es una medida obtenida de la experiencia de algún fenómeno o experimento aleatorio que permite estimar a futuro un comportamiento. Sin embargo, no es definitiva, por lo que es importante saber interpretar los resultados que se obtienen.
P. Condicional
La probabilidad de que un evento $B$ ocurra cuando se sabe que ya ocurrio un evento $A$ se llama probabilidad condicional y se denota por MATH que por lo general se lee como probabilidad de que "ocurra B dado que ocurrió A". Esta probabilidad se define como:
Distribucion Binomial
En estadística, la distribución binomial es una distribución de probabilidad discreta que cuenta el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno de estos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli.
Probabilidad Clasica
Es el número de resultados favorables a la presentación de un evento dividido entre el número total de resultados posibles. Asignación de probabilidad "a priori", si necesidad de realizar el experimento.
La probabilidad clásica o teórica se aplica cuando cada evento simple del espacio muestral tiene la misma probabilidad de ocurrir.
Fórmula para obtener la probabilidad clásica o teórica:
La probabilidad frecuencial de un evento A, que se denotará P(A), se obtiene dividiendo el número de veces que ocurre el evento entre el número total de veces que se realizó el experimento.
P (A) =

Como el valor de la probabilidad es el de la frecuencia relativa, la probabilidad es un número entre 0 y 1, que puede expresarse en forma de fracción, número decimal y porcentaje.
Ejemplo

1. La antena de una instalación de radar recibe, con probabilidad $p$, una señal útil con una interferencia superpuesta, y con probabilidad $1-p$ solo la interferencia pura. Al suceder una señal útil interferida, la instalación indica la existencia de cualquier señal con probabilidad $P_{1}$, cuando aparece una interferencia pura con la probabilidad $P_{2}$. Sí la instalación ha indicado la existencia de cualquier señal, determinar la probabilidad de que esta indicación haya sido ocasionada por una señal útil con interferencia superpuesta.
Permutaciones y Combinaciones
Una permutación de objetos es un arreglo de éstos en el que orden sí importa.
Para encontrar el número de permutaciones de n objetos diferentes en grupos de r, se usan las siguientes fórmulas:
Cuando no se permite repetición
Una combinación de objetos es un arreglo de éstos en el que el orden no importa.
Para encontrar el número de combinaciones de n objetos en grupos de r, se usa la siguiente fórmula:

Full transcript