Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

PROYECTO DE GRAFOS

No description
by

Monica Lorena Perez Guarnizo

on 10 November 2015

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of PROYECTO DE GRAFOS

PROYECTO DE GRAFOS
TEORIA DE GRAFOS
La teoría de grafos (también llamada teoría de las gráficas) es un campo de estudio de las matemáticas y las ciencias de la computación, que estudia las propiedades de los grafos (también llamadas gráficas, que no se debe confundir con las gráficas que tienen una acepción muy amplia) estructuras que constan de dos partes, el conjunto de vértices, nodos o puntos; y el conjunto de aristas, líneas o lados (edges en inglés) que pueden ser orientados o no. Por lo tanto también está conocido como análisis de redes.1

La teoría de grafos es una rama de las matemáticas discretas y de las matemáticas aplicadas, y es un tratado que usa diferentes conceptos de diversas áreas como combinatoria, álgebra, probabilidad, geometría de polígonos, aritmética y topología.

Actualmente ha tenido mayor preponderancia en el campo de la informática, las ciencias de la computación y telecomunicaciones.
HISTORIA
El origen de la teoría de grafos se remonta al siglo XVIII con el problema de los puentes de Königsberg, el cual consistía en encontrar un camino que recorriera los siete puentes del río Pregel (54°42′12″N 20°30′56″E) en la ciudad de Königsberg, actualmente Kaliningrado, de modo que se recorrieran todos los puentes pasando una sola vez por cada uno de ellos. El trabajo de Leonhard Euler sobre el problema titulado Solutio problematis ad geometriam situs pertinentis2 (La solución de un problema relativo a la geometría de la posición) en 1736, es considerado el primer resultado de la teoría de grafos. También se considera uno de los primeros resultados topológicos en geometría (que no depende de ninguna medida). Este ejemplo ilustra la profunda relación entre la teoría de grafos y la topología.

Luego, en 1847, Gustav Kirchhoff utilizó la teoría de grafos para el análisis de redes eléctricas publicando sus leyes de los circuitos para calcular el voltaje y la corriente en los circuitos eléctricos, conocidas como leyes de Kirchhoff, considerado la primera aplicación de la teoría de grafos a un problema de ingeniería.
TIPOS DE GRAFOS
Grafo simple:
o simplemente grafo es aquel que acepta una sola arista uniendo dos vértices cualesquiera. Esto es equivalente a decir que una arista cualquiera es la única que une dos vértices específicos. Es la definición estándar de un grafo.
APLICACIONES
ESTRUCTURAS
Multigrafo:
o pseudografo son grafos que aceptan más de una arista entre dos vértices. Estas aristas se llaman múltiples o lazos (loops en inglés). Los grafos simples son una subclase de esta categoría de grafos. También se les llama grafos no-dirigido.
Grafo dirigido:
Son grafos en los cuales se ha añadido una orientación a las aristas, representada gráficamente por una flecha
Grafo etiquetado:
Grafos en los cuales se ha añadido un peso a las aristas (número entero generalmente) o un etiquetado a los vértices.

Grafo aleatorio
: Grafo cuyas aristas están asociadas a una probabilidad.

Hipergrafo:
Grafos en los cuales las aristas tienen más de dos extremos, es decir, las aristas son incidentes a 3 o más vértices.

Grafo infinito:
Grafos con conjunto de vértices y aristas de cardinal infinito.
Gracias a la teoría de grafos se pueden resolver diversos problemas como por ejemplo la síntesis de circuitos secuenciales, contadores o sistemas de apertura. Se utiliza para diferentes áreas por ejemplo, Dibujo computacional, en toda las áreas de Ingeniería.

Los grafos se utilizan también para modelar trayectos como el de una línea de autobús a través de las calles de una ciudad, en el que podemos obtener caminos óptimos para el trayecto aplicando diversos algoritmos como puede ser el algoritmo de Floyd.

Para la administración de proyectos, utilizamos técnicas como técnica de revisión y evaluación de programas (PERT) en las que se modelan los mismos utilizando grafos y optimizando los tiempos para concretar los mismos.

La teoría de grafos también ha servido de inspiración para las ciencias sociales, en especial para desarrollar un concepto no metafórico de red social que sustituye los nodos por los actores sociales y verifica la posición, centralidad e importancia de cada actor dentro de la red. Esta medida permite cuantificar y abstraer relaciones complejas, de manera que la estructura social puede representarse gráficamente. Por ejemplo, una red social puede representar la estructura de poder dentro de una sociedad al identificar los vínculos (aristas), su dirección e intensidad y da idea de la manera en que el poder se transmite y a quiénes.
Existen diferentes formas de representar un grafo (simple), además de la geométrica y muchos métodos para almacenarlos en una computadora. La estructura de datos usada depende de las características del grafo y el algoritmo usado para manipularlo. Entre las estructuras más sencillas y usadas se encuentran las listas y las matrices, aunque frecuentemente se usa una combinación de ambas. Las listas son preferidas en grafos dispersos porque tienen un eficiente uso de la memoria. Por otro lado, las matrices proveen acceso rápido, pero pueden consumir grandes cantidades de memoria.
Estructura de lista:

Lista de incidencia
- Las aristas son representadas con un vector de pares (ordenados, si el grafo es dirigido), donde cada par representa una de las aristas.

Lista de adyacencia
- Cada vértice tiene una lista de vértices los cuales son adyacentes a él. Esto causa redundancia en un grafo no dirigido (ya que A existe en la lista de adyacencia de B y viceversa), pero las búsquedas son más rápidas, al costo de almacenamiento extra.

Lista de grados
- También llamada secuencia de grados o sucesión gráfica de un grafo no-dirigido es una secuencia de números, que corresponde a los grados de los vértices del grafo.

Estructuras matriciales:

Matriz de adyacencia
- El grafo está representado por una matriz cuadrada M de tamaño n^2, donde n es el número de vértices. Si hay una arista entre un vértice x y un vértice y, entonces el elemento m_{x, y} es 1, de lo contrario, es 0.

Matriz de incidencia
- El grafo está representado por una matriz de A (aristas) por V (vértices), donde [vértice, arista] contiene la información de la arista (1 - conectado, 0 - no conectado)
GRAFO PEZ
GRAFO ARCO
GRAFO DODECAEDRO
Los grafos son el objeto de estudio de esta rama de las matemáticas. Arriba el grafo pez, en medio el grafo arco y abajo el grafo dodecaedro.
Los 7 puentes del río Pregel en Königsberg
GRAFO SIMPLE
MULTIGRAFO
GRAFO DIRIGIDO
GRAFO ETIQUETADO
GRAFO ALEATORIO
HIPERGRAFO
GRAFO INFINITO
REPRESENTACION DE GRAFOS
MATEMATICA

2
MONICA LORENA PEREZ
KAREN DANIELA SORIA
JUAN CARLOS MALDONADO
BRAYAN ESTIVEN RIVEROS
11-03
Full transcript