Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

ATP & CICLO DE KREBS

No description
by

Rodrigo Gomez Cuevas

on 1 October 2014

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of ATP & CICLO DE KREBS

GLUCÓLISIS
La glucosa se desglosa en el citoplasma de la célula durante la etapa de glucólisis. Dos grupos de fosfato se adjuntan a la molécula de glucosa y ésta se divide en dos compuestos idénticos. Un ion de hidrógeno con dos electrones se desprende de cada uno de estos compuestos y se adjunta a un dinucleótido de nicotinamida y adenina para formar el NADH. Dos átomos de hidrógeno extras se desprenden y se unen con el oxígeno para formar agua. El carbón compuesto remanente se desglosa en dos moléculas de piruvato. En esta etapa se adquieren dos moléculas de ATP.
CICLO DE KREBS
ATP
La adenosina trifosfato es una molécula utilizada por todos los organismos vivos para proporcionar energía en las reacciones químicas.
TRANSPORTE DE ELECTRONES
Cadena de transporte de electrones

El NADH que ha sido creado en las etapas de respiración celular anteriores libera los electrones a la cadena de transporte de electrones. Cada molécula consecutiva en la cadena tiene una atracción más fuerte al electrón, así que éste continúa a través de la cadena hasta que alcanza un átomo de oxígeno al final, donde se forma agua y es liberada. En el camino, libera energía que se usa para crear moléculas de ATP. La cadena de transporte de electrones crea 32 moléculas de ATP.
T R A N S P O R T E D E E L E C T R O N E S O C A D E N A R E S P I R A T O R I A
En esta etapa se oxidan las coenzimas reducidas, el NADH se convierte en NAD+ y el FADH2 en FAD+. Al producirse esta reacción, los átomos de hidrógeno (o electrones equivalentes), son conducidos a través de la cadena respiratoria por un grupo de transportadores de electrones, llamados citocromos. Los citocromos experimentan sucesivas oxidaciones y reducciones (reacciones en las cuales los electrones son transferidos de un dador de electrones a un aceptor).
ATP & CICLO DE KREBS
ALIMENTOS = ENERGIA

FUNCIONAMIENTO ADECUADO
FUNCION


Fuente de energía

El ATP es la principal fuente de energía para la mayoría de las funciones celulares. Esto incluye la síntesis de macromoléculas como el ADN, el ARN y las proteínas. También desempeña un papel fundamental en el transporte de macromoléculas a través de las membranas celulares, es decir, en la exocitosis y endocitosis.
|| R E S P I R A C I O N C E L U L A R ||
-------------------------------------
(imaginemos que respira)
Célula
CAPTA ENERGÍA
ATP
trifosfato de adenosina
El ATP es un nucleótido trifosfato que se compone de adenosina (adenina y ribosa, como β-D-ribofuranosa) y tres grupos fosfato. Su fórmula molecular es C10H16N5O13P3. La estructura de la molécula consiste en una base purina (adenina) enlazada al átomo de carbono 1' de un azúcar pentosa. Los tres grupos fosfato se enlazan al átomo de carbono 5' de la pentosa. Los grupos fosforilo, comenzando con el grupo más cercano a la ribosa, se conocen como fosfatos alfa (α), beta (β) y gamma (γ).
Paso 1

La serie de reacciones glucolíticas se inicia con la activación de la glucosa

Glucosa + ATP glucosa 6 fosfato + ADP

La reacción del ATP con la glucosa para producir glucosa 6-fosfatoy ADP es exergónica. Parte de la energía liberada se conserva en el enlace que une al fosfato con la molécula de glucosa que entonces se energiza.

Paso 2

La glucosa 6-fosfato sufre una reacción de reordenamiento catalizada por una isomerasa, con lo que se forma fructosa 6-fosfato.

Paso 3

La fructosa 6-fosfato acepta un segundo fosfato del ATP, con lo que se genera fructosa 1,6-difosfato; es decir fructosa con fosfatos en las posicio-nes 1 y 6.

La enzima que regula esta reacción es la fosfofructocinasa.

Nótese que hasta ahora se han invertido dos moléculas de ATP y no se ha recuperado energía.

La fosfofructocinasa es una enzima alostérica, el ATP es un efector alostérico que la inhibe. La interacción alostérica entre ellos es el principal mecanismo regulador de la glucólisis. Si existe ATP en cantidades suficientes para otros fines de la célula, el ATP inhibe la actividad de la enzima y así cesa la producción de ATP y se conserva glucosa. Al agotar la célula la provisión de ATP, la enzima se desinhibe y se reanuda la degradación de la glucosa. Este es uno de los puntos principales del control de la producción de ATP.

Paso 4

La fructosa 1,6 -difosfato se divide luego en dos azúcares de 3 carbonos, gliceraldehído 3-fosfato y dihidroxiacetona fosfato. La dihidroxiacetona fosfato es convertida enzimáticamente (isomerasa) en gliceraldehído fósfato. Todos los pasos siguientes deben contarse dos veces para tener en cuenta el destino de una molécula de glucosa.

Debemos recordar que hasta el momento no se ha obtenido ninguna energía biológicamente útil. En reacciones subsecuentes, la célula recupera parte de la energía contenida en el PGAL.

Paso 5

Las moléculas de PGAL se oxidan es decir, se eliminan átomos de hidrógeno con sus electrones, y el NAD+ se reduce a NADH. Esta es la primera reacción de la cual la célula cosecha energía. El producto de esta reacción es el fosfoglicerato. Este compuesto reacciona con un fosfato inorgánico (Pi) para formar 1,3 difosfoglicerato. El grupo fosfato recién incorporado se encuentra unido por medio de un enlace de alta energía.

Paso 6

El fosfato rico en energía reacciona con el ADP para formar ATP. (en total dos moléculas de ATP por molécula de glucosa). Esa transferencia de energía desde un compuesto con un fosfato, de alta energía se conoce como fosforfiación.

Paso 7

El grupo fosfato remanente se transfiere enzimáticamente de la posición 3 a la posición 2 (ácido 2-fosfoglicérico).

Paso 8

En este paso se elimina una molécula de agua del compuesto 3 carbono. Este reordenamiento interno de la molécula concentra energía en la vecindad del grupo fosfato. El producto es el ácido fosfoenolpirúvico (PEP).

Paso 9

El ácido fosfoenolpirúvico tiene la capacidad de transferir su grupo fosfato a una molécula de ADP para formar ATP y ácido pirúvico. (dos moléculas de ATP y ácido pirúvico por cada molécula de glucosa).





E t a p a d e t r a n s i ci ó n y e l c i c l o d e K r e b s

La estapa de transición se lleva a cabo en la mitocondrias. El piruvato se combina con el NAD+ para formar el NADH y moléculas de acetil coenzima A. El próximo paso es el ciclo de Krebs, también conocido como el ciclo de ácido cítrico. En éste ciclo, los átomos de hidrógeno se desprenden de las moléculas de acetil coenzima A para usar los electrones y poder crear ATP. Algunas veces, todo el remanente de las moléculas de acetil coenzima A es carbón, el cual se combina con el oxígeno para formar dióxido de carbono que es emitido como un desecho. El ciclo de Krebs crea cuatro moléculas de ATP.
dinucleótido de nicotinamida y adenina
NUCLEÓTIDOS
Base ADENINA
Base NICOTIDAMINA
Grupos Fosfatos
P E N T O S A
B A S E N I T R O G E N A D A
En consecuencia, en esta etapa final de la respiración, estos electrones de alto nivel energético descienden paso a paso hasta el bajo nivel energético del oxígeno (último aceptor de la cadena), formándose de esta manera agua.
BIBLIOGRAFÍA

l Alberts, B et al; (1996) Biología Molecular de la Célula. 3ra Edición. Ediciones Omega S.A. Barcelona.

l Campbell, N; (1997) Biology. 4th Edition. the Benjamin Cummings Publishing Company. Inc. California

l Castro, Handel y Rivolta . Actualizaciones en Biología. (1986). Ed. EUDEBA

l Castro R. et al. Investigación y Ciencia., N° 39, Diciembre de 1979.
Youtube:
Respiracion Celular | GLUCOLISIS www.youtube.com/watch?v=-b2nN4DO6l4
Respiracion Celular | Formacion de Acetil Coenzima A y Ciclo de Krebs www.youtube.com/watch?v=NVpKllhlHC8
Respiracoin Celular | Cadena Respiratoria www.youtube.com/watch?v=ZDz7JHElme8
Full transcript