Loading presentation...

Present Remotely

Send the link below via email or IM


Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.


Copy of AP Bio- Cells 2: Matter & Energy Processing.

2 of 5 of my cell biology unit. Image Credits: Biology (Campbell) 9th edition, copyright Pearson 2011, & The Internet. Provided under the terms of a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. By David Knuffke.

Kate Gallagher

on 14 September 2012

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Copy of AP Bio- Cells 2: Matter & Energy Processing.

Central vacuoles: in many mature plant cells
stockpiling proteins, inorganic ions
depositing metabolic byproducts
storing pigments, defensive compounds A Tour of The Cell (Part 2) A Reminder: The Life of the Cell All cells must do the following things to stay alive:
Process matter: Molecules need to be acquired, synthesized and digested
Process energy: In order to process matter, energy must be provided. This energy usually comes from one of two places (where?)
Process information: The instructions that enable the cell to process matter and energy must be interpreted by the cellular system. Signals from the environment must also be interpreted.

Many cells will also do the following :
Reproduce: The information that runs the cell must be passed on to new generations of cells.
Communicate: Cells respond to/direct other cells. Cells have systems to do all of these things! Big Questions: What is the relationship between matter and energy?

Why does life require matter?

Why does life require energy?

How do the interactions of cellular components allow the cell to process matter and energy? Make Sure You Can: Mitochondria & Chloroplast Similarities: Energy Processing Mitochondria Chloroplasts Lysosomes Energy Processing & Evolution 2 major sources:

The Sun* Vacuoles There are all sorts of specialized digestive sacs in cells. Almost all eukaryotic cells have mitochondria

The more active the cell, the more mitochondria Energy: The ability to do work. Stored in chemical bonds.

Meaning: The ability to move matter around. Why do cells need Energy? Where do cells get energy from? Things that require matter movement:
taking in nutrients (food, O2)
breaking molecules down
building molecules
making ATP
removing waste
all life processes Energy process: Respiration

From food (glucose) to ATP *There are a few exceptions Mitochondia Chloroplasts Cells convert incoming energy to forms that they can use using two major organelles: ATP = contains easily broken bonds (quick energy usage) Energy is Processed NOT "Made"
...Matter is, too! Energy process: Photosynthesis

From sunlight to Carbohydrates CO2 & H2O O2 & Sugar Sunlight Heat Structure:
A sac full of digestive ("hydrolytic") enzymes Function:
Digestion of large molecules
Digestion of damaged cell parts
Apoptosis ("programmed cell death") Cytosol pH is 7. Lysosomal enzymes work best at pH 5 (why?) Lysosomal diseases:
often fatal.
digestive enzyme don't work Lysosomal "Storage" diseases:
lysosomepicks up biomolecules but can’t digest them.
lysosomes fill up, grow larger & larger until disrupts cell & organ function
more than 40 known diseases Tay-Sachs disease: a recessive genetic disease.
undigested fat builds up in brain cells
mental retardation and death at an early age (by 4) Other "-somes" Ex. Peroxisomes
breakdown fatty acids to sugars
detoxify cell
detoxifies alcohol & other poisons
produce peroxide (H2O2- a dangerous molecule) Structure:
An membranous sac full of "storage" materials. Functions: Contractile vacuoles: in freshwater protists, pump excess H2O out of cell. Food vacuoles: Contain undigested food. Fuse with lysosomes. Can you spot the difference? Plant-like cell Animal-like cell Structure:
Outer membrane
Highly folded inner membrane (why?)
Cristae: folds of the inner membrane
Matrix: Fluid filled inner cavity. Contains DNA, free ribosomes & enzymes Function:
Aerobic cellular respiration
Digestion ("catabolism") of macromolecules to produce ATP, CO2 and H2O Mitochondria are stained red: Thank your mitochondria! Mitochondria reproduce independently of the cell Structure:
Outer Membrane
Inner Membrane
Stroma: liquid inside inner membrane. Contains DNA and Ribosomes & enzymes. Where sugar is made.
Thylakoids: Membranous sacs inside inner membrane. Where ATP is made. Stacked into "Grana" Major Energy/Matter Processors: Function:
Building ("anabolism") of sugar from ATP, CO2 & light. Produces O2 as waste Only plant-like cells have chloroplasts! Chloroplasts are just one of a group of plant organelles called "plastids" All plastids are the products of endosymbiosis (DNA sequence analysis puts plastid ancestors near modern cyanobacteria) Chloroplasts make plants green (why?) both transform energy
both generate ATP
both have double membranes
both are "semi-autonomous" organelles (not part of endomembrane system)
both move, change shape, divide on their own
both have small internal ribosomes, circular DNA & make their own protein enzymes How can we explain these facts? Endosymbiosis But wait, there's more! give flowers and fruit their colors synthesize and store starch stores lipids stores protein Similar patterns of plastid evolution & diversification are seen in algae's, too. Any Questions? Adenosine TriPhosphate (ATP) See if you can guess which of these 2 white blood cells has gone apoptopic.

Hint: an apoptopic cell breaks apart into vessicles called "blebs". The blebs are absorbed by neighboring cells. Apoptosis is responsible for the space between your fingers, your nostrils, your eyelids, and generally every hole in your body (that's supposed to be there). Explain why cells need to process matter and energy and how they do it.

Explain the relationship between chloroplasts and mitochondria.

Explain the relationship between structure and function in all organelles mentioned in this presentation.

Explain how the organelles in this presentation provide for essential life processes.

Refine your understanding of endosymbiosis in light of the information discussed in this presentation.
Full transcript