Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Desigualdades e inecuaciones en los números reales

No description
by

alanis paramo

on 6 March 2014

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Desigualdades e inecuaciones en los números reales

Desigualdades e inecuaciones en los números reales
Desigualdades
Los enunciados a > b y a < b, junto con las expresiones a £ b (a < b o a = b) y a ³ b (a > b o a = b) se conocen como desigualdades. Las primeras se llaman desigualdades estrictas y las segundas, desigualdades no estrictas o amplias.


En numerosas oportunidades y situaciones cotidianas surge la necesidad de comparar dos cantidades y establecer una relación entre ellas. Las desigualdades se comportan muy bien con respecto a la suma pero se debe tener cuidado en el caso de la división y la multiplicación.

Ejemplos.
· Como 2 < 5 entonces 2 + 4 < 5 + 4, es decir, 6 < 9.
· Como 8 > 3 entonces 8 - 4 > 3 - 4, esto es, 4 > - 1
Inecuaciones
Una inecuación es una desigualdad en la que aparecen uno o más valores desconocidos. Resolverla es encontrar el conjunto de todos los números reales para los cuales es verdadera.

Para resolver una inecuación se utilizan las propiedades de las desigualdades y de los números reales que conducen a una desigualdad equivalente. Esto significa que la nueva desigualdad tiene el mismo conjunto de soluciones que la dada.

Todos los números que satisfacen la desigualdad constituyen el conjunto solución.
Ejemplo. Encuentre los valores de x que verifican la desigualdad 2x + 4 < 5.
Para resolver la inecuación se debe transformarla paso a paso, aplicando propiedades hasta obtener el conjunto solución.

· se suma - 4 a ambos miembros:
2x + 4 + (- 4) < 5 + (- 4)
2x <1
· se multiplican ambos miembros por
1/2 x: 1/2

La solución es el conjunto de todos los valores reales de x menores que 1/2
Por lo tanto, el conjunto solución es S= {x/x <1/2}

Números reales
Al conjunto de los números reales se llega por sucesivas ampliaciones del campo numérico a partir de los números naturales. En cada una de las ampliaciones se avanza y mejora respecto de la anterior.

Con los números naturales (N) se puede sumar y multiplicar pero no se puede restar (a - b) si a < b. Se definen así los números negativos o enteros negativos que al unirse con el cero y los naturales constituyen el conjunto de los números enteros (Z). Con los números enteros (Z) se puede sumar, restar, multiplicar pero no dividir a/b si a no es múltiplo de b.
En matemática, una inecuación es una desigualdad algebraica en la que aparecen una o más incógnitas en los miembros de la desigualdad. Si la desigualdad es del tipo < o > se denomina inecuación en sentido estricto y si es del tipo <_o _> se denomina inecuación en sentido amplio.
Del mismo modo en que se hace la diferencia de igualdad y ecuación, una inecuación que es válida para todas las variables se llama inecuación incondicional y las que son válidas solo para algunos valores de las variables se conocen como inecuaciones condicionales. Los valores que verifican la desigualdad, son sus soluciones.
Ejemplo de inecuación incondicional: |x| <_ |x|+|y|.
Ejemplo de inecuación condicional: -2x+7<2.
Full transcript