Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

EJE HIPOTÁLAMO HIPÓFISO ADRENAL

No description
by

Gardenia Almaraz Vasquez

on 8 August 2016

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of EJE HIPOTÁLAMO HIPÓFISO ADRENAL

¿QUÉ ES?
Es un conjunto complejo de influencias directas e interacciones retroalimentadas entre el hipotálamo, la glándula pituitaria y la glándula adrenal o suprarrenal. que controla las reacciones al estrés y regula varios procesos del organismo como la digestión, el sistema inmune, las emociones, la conducta sexual y el metabolismo energético.
CICLO
CRH
ACTH
Es una hormona polipeptídica, producida por la hipófisis y que estimula a las glándulas suprarrenales. Ejerce su acción sobre la corteza suprarrenal estimulando la esteroidogénesis, estimula el crecimiento de la corteza suprarrenal y la secreción de corticosteroides.
Su secreción es pulsátil y presenta un ritmo circadiano característico, la máxima secreción se produce por la mañana. Su secreción también aumenta como respuesta a los niveles bajos de cortisol circulante, junto con el estrés, la fiebre y la hipoglucemia aguda.
HORMONAS IMPLICADAS
Hormona estimuladora de corticotropina (CRH)
Hormona adenocorticotropa (ACTH)
Cortosol
Serotonina
Adrenalina
Noradrenalina
EJE HIPOTÁLAMO PITUITARIO ADRENAL
Es una hormona peptídica y un neurotransmisor involucrado en la respuesta al estrés, y también la encargada de activar la secreción hipofisiaria de ACTH.
Es sintetizada en el hipotálamo y llega a las células productoras de ACTH de la hipófisis anterior a través del sistema portahipofisiario.
Las situaciones de estrés provocan hiperactividad en el núcleo C1 del bulbo raquídeo, desde donde se envían terminales axónicos al núcleo paraventricular del hipotálamo que estimulan la producción de CRH. Se activa de esa forma el eje hipotalámico-hipofisario-adrenal, lo que ocasiona un aumento de la producción de ACTH y, consiguientemente, de cortisol.
El núcleo paraventricular del hipotálamo, que contiene neuronas neuroendocrinas que sintetizan y secretan vasopresina y la hormona liberadora de corticotropina (CRH) o corticoliberina. Estos dos péptidos regulan:
El lóbulo anterior de la glándula pituitaria. En particular, el CRH y la vasopresina estimulan la secreción de la hormona adrenocorticotropa (ACTH), también conocida como corticotropina. A su vez, la ACTH actúa sobre:
El córtex adrenal, que produce hormonas glucocorticoides, principalmente cortisol en humanos, en respuesta a la estimulación por ACTH. Los glucocorticoides a su vez retroactúan sobre el hipotálamo y la hipófisis (para inhibir la producción de CRH y ACTH) en un ciclo de retroalimentación negativo.
El CRH y la vasopresina se liberan desde las terminaciones nerviosas neurosecretoras de la eminencia media. Son transportadas a la pituitaria anterior a través del sistema portal del tallo hipofisario. allí, la CRH y la vasopresina puede actuar sinérgicamente para estimular la secreción de la ACTH almacenada en las células corticotropas. la ACTH se transporta por la sangre al córtex adrenal de la glándula suprarrenal, donde estimula rápidamente la biosíntesis de corticoesteroides como el cortisol
El cortisol producido en el córtex adrenal retroalimenta negativamente el sistema inhibiendo el hipotálamo y la hipófisis. Esto reduce la secreción de CRH y la vasopresina, y también reduce directamente la escisión de propiomelanocortinae(POMC)n ACTH y β-endorfina.
La Epinefrina y norepinefrina se producen en la médula adrenal a través de la estimulación simpática y los efectos locales del cortisol ( sobrerregulación de enzimas para fabricar E/NE) . Posteriormente la E/NE retroalimentan positivamente a la hipófisis e incrementan de esa manera la transformación de la POMC en ACTH y β-endorfinas.
Funciones
La ACTH estimula dos de las tres zonas de la corteza suprarrenal que son la zona fascicular donde se secretan los glucocorticoides (cortisol y corticosterona) y la zona reticular que produce andrógenos como la dehidroepiandrosterona (DHEA) y la androstenediona.
La ACTH también estimula la captación de lipoproteínas en células corticales, cosa que hace aumentar la presencia de colesterol en las células de la corteza suprarrenal. Las acciones a largo plazo de la ACTH incluyen la estimulación de la transcripción de los genes codificados por enzimas esteroidogénicas, especialmente la P450scc. Este efecto se observa a lo largo de unas cuantas horas. Además de enzimas esteroidogénicas, la ACTH también aumenta la transcripción de genes mitocondriales que se codifican para las subunidades de los sistemas de la fosforilación oxidativa mitocondrial. Estas acciones son probablemente necesarias para suplir el aumento de requerimiento energético de las células corticales al ser estimuladas por la ACTH.
La ACTH además, tiene función lipolítica.
Síntesis
La regulación de la síntesis de ACTH se produce de la siguiente manera: En situación de estrés físico o psicológico como el dolor, el cansancio, miedo o cambios de la temperatura, es estimulada intensamente la secreción del factor hipotalámico CRH. El actúa como un potente estimulador del lóbulo anterior de la hipófisis, lo que induce a esta glándula a sintetizar ACTH.
También estimulan la síntesis de ACTH otras hormonas como la arginina-vasopresina (AVP), las catecolaminas, la angiotensina II, la serotonina, la oxitocina, el péptido natriurético atrial (ANF), la colecistoquinina, y el péptido vasoactivo intestinal (VIP), entre otros.
Inversamente, existe un retrocontrol negativo para los glucocorticoides, que se fijan sobre los receptores del hipotálamo e inhiben la secreción de CRH. Los glucocorticoides actúan igualmente sobre la hipófisis bloqueando la liberación de ACTH a la circulación sanguínea.
Una de las características de la secreción de ACTH es su ritmo circadiano, regulado por los ciclos de luz-oscuridad. El estrés inducido por dolor, temor, fiebre e hipoglucemia también estimula la secreción de ACTH.
Los glucocorticoides secretados en la corteza suprarenal trabajan para inhibir la secreción de CRH en el hipotálamo, que en consecuencia reduce la secreción de ACTH en la glándula pituitaria.
CORTISOL
Es una hormona esteroidea, o glucocorticoide, producida por la glándula suprarrenal. Se libera como respuesta al estrés y a un nivel bajo de glucocorticoides en la sangre. Sus funciones principales son incrementar el nivel de azúcar en la sangre a través de la gluconeogénesis, suprimir el sistema inmunológico y ayudar al metabolismo de grasas, proteínas y carbohidratos. Además, disminuye la formación ósea. La cantidad de la hormona cortisol presente en la sangre está sometida a una variación diurna, con niveles más altos por la mañana, y niveles más bajos entre las 12-4 horas de la noche, o 3–5 horas después de la aparición del sueño. La información sobre el ciclo luz/oscuridad se transmite desde la retina hasta el núcleo supraquiasmático del hipotálamo.
El cortisol es liberado en respuesta al estrés y actúa para restablecer la homeostasis. Sin embargo, la secreción prolongada de cortisol, que puede ser debida al estrés crónico da lugar a importantes cambios fisiológicos.
ESTRES
La liberación de CRH a partir del hipotálamo está bajo la influencia del estrés mediante los niveles de cortisol sanguíneo y por el ciclo sueño-vigilia. En los individuos sanos, el cortisol aumenta rápidamente tras el despertar, alcanzando un pico en 30-40 minutos. Posteriormente decrece de forma gradual a lo largo del día, aumentando nuevamente al atardecer. Los niveles de cortisol caen entonces de madrugada, llegando al mínimo a media noche. Se ha relacionado al síndrome de fatiga crónica con un ciclo circadiano del cortisol anormalmente plano, con el insomnio y con el burn-out. Las conexiones anatómicas entre las áreas cerebrales como la amígdala cerebral, el hipocampo y el hipotálamo facilitan la activación del eje HHA. La información sensorial que llega al aspecto lateral de la amígda se procesa y transmite al núcleo central, que la proyecta posteriormente a varios lugares del cerebro implicados en la respuesta hacia el miedo. En el hipotálamo, los impulsos señalizadores de pánico activan tanto el sistema nervioso simpático como los sistemas moduladores del eje HHA
El incremento de la producción de cortisol media las relaciones de alarma al estrés, facilitando una fase adaptativa del síndrome general de adaptación en el que las reaciones de alarma, como la respuesta inmune, son suprimidas permitiendo al organismo generar contramedidas.
Los glucocorticoides tienen muchas funciones importantes, incluyendo la modulación de las reacciones de estrés, pero en exceso pueden ser dañinas. Se cree que la atrofia del hipocampo en humanos y animales expuestos a estrés severo está provocada por la exposición prolongada a elevadas concentraciones de glucocorticoides. Las deficiencias en el hipocampo pueden reducir los recursos disponibles de memoria para ayudar al organismo a formular reacciones apropiadas al estrés. El eje HHA está implicado en la neurobiología de los trastornos emocionales y en enfermedades funcionales, como el trastorno de ansiedad, el trastorno bipolar, el Síndrome por estrés postraumático, la depresión clínica, el burn-out, el Trastorno límite de la personalidad, el síndrome de fatiga crónica y el síndrome del colon irritable
Los estudios experimentales han demostrado en muchos tipos diferentes de estrés los efectos sobre el eje HHA en diferentes circunstancias.1 Los estresantes pueden ser de muchos tipos distintos -en estudios experimentales en ratas, se hace a menudo una distinción entre "estrés social" y "estrés físico", pero ambos tipos activan el eje HPA, aunque por vía de diferentes rutas. Algunos neurotransmisores del tipo monoamina son importantes en la regulación del eje HHA, especialmente la dopamina, la serotonina y la norepinefrina (noradrenalina).
SIGNOS Y SINTOMAS
ESTRES
DEPRESIÓN
IRRITABILIDAD
SINDROME DE BOURNOT
HIPOTALAMO
El hipotalamo es una área del cerebro que se halla situado debajo del tálamo. El hipotalamo se encarga de segregar hormonas y sustancias que estimulan la secreción de hormonas hipofisiarias.
Hipófisis
Glandula Suprarrenal
Son dos estructuras de forma piramidal (derecha) y semilunar (izquierda), ambas situadas encima de los riñones. Su función consiste en regular las respuestas al estres, a travez de la síntesis de corticoesteroides (cortisol) y catecolamidas (adrenalina
Full transcript