Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

metodo de ruffini y horner

No description
by

Juan Carlos Phal

on 13 October 2014

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of metodo de ruffini y horner

La técnica de Horner es un método que se emplea para la división de dos polinomios de cualquier grado (Se diferencia de la Técnica de Ruffini ya que éste sólo se emplea cuando el divisor es de primer grado)
TEORIA DE HORNER
RUFFINI
métodos de ruffini y horner
HORNER
102 AR
Juan Carlos cuyos palacios
TEORIA DE RUFFINI
La regla de Ruffini es un algoritmo que permite obtener fácilmente el cociente y el resto de la división de un polinomio por un binomio de la forma x-a. Veamos el algoritmo con un ejemplo, consideremos P(x)=2x3 + x2 - 3x + 5 y Q(x)=x-1. La división se realiza como sigue:
1.Se ordena el polinomio P(x) de mayor a menor grado y se colocan los coeficientes de cada término . Si no apareciese algún término entre el de mayor grado y el de menor se coloca un 0. A la izquierda se pone el número que se resta a x en Q(x), en nuestro caso 1 y se baja el coeficiente del término de mayor grado, este paso se corresponde con la figura 1.
2. Se multiplica el coeficiente que se ha bajado (2) por el que se ha colocado a la izquierda (1). El resultado del producto se coloca debajo del coeficiente del término siguiente y se suman. Figura 2
3. El resultado de la suma se vuelve a multiplicar por el número situado a la izquierda y se repite el proceso. Figuras 3 y 4.
4. El último número (recuadro rojo en Fig. 4) se corresponde con el resto de la división mientras que el resto de números de la fila inferior son los coeficientes del cociente.
Resto = 5 y C(x)=2x2 + 3x por tanto 2x3 + x2 - 3x + 5 =(x-1) (2x2 + 3x) +5
Ejercicios de ruffini
Como resolverlo:
como resolverlo :
Ejercicios de Horner
gracias .. :D
Full transcript