Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Инфрақызыл,ультракүлгін сәулелер.Спектр.Рентген сәулелері.

No description
by

zhazira zhazira

on 2 February 2014

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Инфрақызыл,ультракүлгін сәулелер.Спектр.Рентген сәулелері.

Инфрақызыл,ультракүлгін сәулелер.Спектр.Рентген сәулелері.

Рентген сәулелері
Радиоактивтілік
Инфрақызыл сәулелерінің әсері және қолданылуы
Based on Jim Harvey's speech structures
Спектр (лат spektrum – елестету, бейне) – физикада берілген физикалық шаманың қабылдайтын әр түрлі мәндерінің жиынтығы. Спектрлер үздіксіз және дискретті (үздікті) болып бөлінеді. Спектр ұғымы көбіне тербелмелі процестерде (мысалы, тербеліс спектрі, дыбыс спектрі, оптикалық спектрлер, теледидарлық сигналдар спектрі, т.б.) жиі қолданылады. Ядролық физикада массалар спектрі, сондай-ақ импульстер, энергиялар және жылдамдықтар спектрі ұғымдары да пайдаланылады.
Зат атомдары мен молекулалары электромагниттік сәуле шығаруды сіңіре отырып, энергетикалық қоздырылған күйге ауысады. Атомдар мен молекулалардың осы сіңірген энергиясы олардың тербелмелі, айналмалы немесе ілгерілемелі энергиясын арттыруға жұмсалады, ал кей жағдайда ол екінші реттік сәуле шығаруға немесе фотохимиялық процесс түріне түрленеді.
Инфрақызыл сәулелер[1] - Толқын ұзындығы 760 нм-ден 2 мм-ге ( λ = 0,74 мкм ) және (λ ~ 1—2 мм) дейінгі аралықта жататын электромагниттік сәуле. Инфрақызыл сәулелер электромагниттік толқындар шкаласында радиотолқындар мен көрінетін жарық арасындағы бөлікті алып жатады. Инфрақызыл сәулені 1800 жылы ағылшын ғалымы В.Гершель ашты.
Инфрақызыл сәулелерінің табиғаты көрінетін жарық табиғатымен бірдей. Инфрақызыл сәулелерінің спектры жеке сызықтардан, жолақтан немесе тұтас болып келеді. Қозған атом немесе ион сызықты спектр шығарса, қозған молекула жолақ спектр шығарады. Қызған қатты немесе сұйық денелер тұтас спектрлі инфрақызыл сәулелер шығарады.

Күн сәулесінің 50 пайызы инфрақызыл аймақта жатады. Электр шамынан бөлінетін сәуле энергиясының 80 пайызға жуығы инфрақызыл сәуле болып келеді.
Инфрақызыл сәуленің екі маңызды сипаттамасы бар:
толқын ұзындығы (тербеліс жиілігі)
сәуленің интенсивтілігі.
Инфрақызыл сәулелер толқын ұзындығына байланысты үшке бөлінеді:
. жақын (0,75—1,5 мкм);
орташа (1,5 – 5,6 мкм);
алыс (5,6—100 мкм).
Кейбір заттар инфрақызыл сәулелер түскенде өзінің мөлдірлігінің сыну және шағылу коэффициенттерін өзгертеді. Көрінетін жарық түскенде мөлдір болатын кейбір заттар инфрақызыл сәуле түскенде мөлдір болмайды. Инфрақызыл сәулелер ғылыми-зерттеу жұмыстарында, криминалистикада, жердегі және ғарыштағы байланыс жұмысында, медицина саласында, фотографияда, жеміс-жидектерді құрғатуда, машиналарды тез кептіру ісінде, биология және мал дәрігерлігінде пайдаланылады.
Рентген сәулелерін 1895 жылы В.Рентген ашқан. Ол 1895 — 97 ж. Рентген сәулесінің қасиеттерін зерттей отырып, алғашқы рентген түтігін жасады. Рентген сәулесінің түрлі материалдар мен адам денесінің жұмсақ ұлпаларынан өтіп кететіні байқалған соң, оны медицинада кеңінен қолдана бастады. 1912 ж. Рентген сәулесінің дифракциясы ашылып, кристалдардың құрылымы периодты болатыны дәлелденді. 20 ғ-дың 20-жылдары рентгендік спектрлер материалдарға элементтік талдау жасауға, 30-жылдары заттың электрондық энергетик. құрылымын зерттеуге қолданыла бастады. Рентген сәулесі түзілу механизміне байланысты үздіксіз және сызықтық болады. Үздіксіз Рентген сәулесі зарядталған шапшаң бөлшектердің (мыс., катодтан ұшып шыққан электрондар) нысана атомдарының сыртқы электрондық қабаттармен әсерлесуі нәтижесінде, ал сызықтық Рентген сәулесі — ішкі электрондық қабаттармен әсерлесуі нәтижесінде пайда болады. Рентген сәулесінің затпен әсерлесуі кезінде Рентген сәулесі жұтылады, шашырайды немесе фотоэффект құбылысы байқалады.
Рентген сәулесінің тірі организмдерге әсері оның тіндерін (ұлпаларын) иондау дәрежесіне қарай пайдалы немесе зиянды болуы мүмкін. Рентген сәулесінің жұтылуы -ға байланысты болғандықтан, оның қарқындылығы Рентген сәулесінің биол. әсерінің өлшемі бола алмайды. Рентген сәулесінің затқа тигізетін әсерінің сандық шамасын есептеумен рентгенометрия айналысады, оның өлшем бірлігі Р (рентген). Рентген сәулесі рентгендік терапия мақсаттары үшін кеңінен қолданылады
Техниканың көптеген салаларында рентгендік дефектоскопия әр түрлі ақауларды, жарықтарды, қуыстарды, пісіру жіктерін, т.б. анықтауға мүмкіндік береді. Рентген құрылымдық талдау кристалл торындағы минерал атомдарының анорган. және органик. қосылыстарының кеңістіктік орналасуын анықтайды. Рентген сәулесін қатты денелердің қасиеттерін зерттеуге қолданумен материалдар рентгенографиясы айналысады. Рентгендік спектроскопия заттардағы электрондардың күйлер тығыздығының энергия шамасы бойынша таралуын, хим. байланыстың табиғатын зерттейді, қатты денелер мен молекулалардағы иондардың эффекттік зарядын табады.
Рентген сәулелері
Рентген сәулесі — гамма- және ультракүлгін сәулелер арасындағы диапазонды қамтитын электрмагниттік толқындар.
Радиоактивтілік (лат. radіo – сәуле шығару, actіvus – әсерлік) – орнықсыз атом ядроларының басқа элементтер ядросына бөлшектер немесе гамма-кванттар шығару арқылы өздігінен түрлену құбылысы.
Ядролық физиканың даму тарихына көз жүгіртсек, оның қайнар көзі 1886 жылы француз ғалымы А. Беккерель ашқан табиғи радиоактивтік құбылысынан басталады. Атомдардың тұрақты еместiгi ХIХ ғасырдың ақырында ашылғанды. 46 жыл өткен соң ядролык реактор жасалды. Радиоактивтiктiң — атом ядросының күрделi құрлысын дәлелдейтiн құбылыстың ашылуы сәттi кездейсоқтықтың жемiсi болды.
Рентген сәулелерi алғаш рет шапшаң электрондар разрядтық түтiктiң шыны ыдысының кабырғаларының соқтығысуынан алынған. Олармен бiр мезгiлде түтiк қабырғаларының жарық шығаруы байкалған. Беккерель ұзақ уақыт осы тектес құбылысты — алдын ала күн жарығына сәулелендiрiлген заттардың соңынан сәуле шығаруын зерттеумен шұғылданған. Оның ойында мынадай сұрақ пайда болады: уран тұздарын сәулелендiргеннен кейiн көрiнетiн жарықпен қатар рентген сәулесi де пайда болмай ма? Беккерель фотопластинаны тығыз қара қағазға орап, үстiне уран тұзының қиыршықтарын сеуiп, ашық күн сәулесiне койды. Айқындағаннан кейiн пластинаның тұз жатқан бөлiктерi қарайғанын көрген. Ендеше, уран, рентген сәулесi сияқты, мөлдiр емес денелерден өтiп, фотопластинаға әсер ететiн белгiсiз сәуле шығарады екен. Беккерелъ бұл сәуле шығару күн сәулелерiнiң әсерінен пайда болады деп ойлады. Бiрақ 1896 ж. ақпанның бiр күнiнде ауа райы бұлтты болғандықтан, кезектi тәжiрибенi өткiзу сәтi түспедi де, Беккерель үстiне уранның тұзы себiлген мыс крест жатқан пластинаны үстелдiң суырмасына алып койған.
Екi күн өткен соң пластинаны алып айқындаған кезде, онда крестiң айқын колеңкесi түрiнде дақ пайда болғанын байқаған. Бұл — уран тұздарының сыртқы факторлардың әсерiнсiз-ақ, өздiгiнен белгiсiз сәуле шығаратынын көрсетедi. Қауырт зерттеулер басталды. Рас, осы сәттi кездейсоқтық, болмаған күнде де, ерте ме, кеш пе радиоактивтi құбылыс ашылған болар едi. Кешiкпей Беккерель, уран тұздарының шығарған сәулесi, рентген сәулелерi сияқты, ауаны иондайтынын, соның салдарынан электроскоп разрядталатынын байқаған. Уранның түрлiше химиялық қосылыстарын тексерiп көріп, ол мынадай маңызды фактiнi анықтады: сәуле шығарудың интенсивтiгi тек препараттағы уранның мөлшерiмен анықталады, оның қандай қосылыстарға кiретiндiгiне мүлдем тәуелсiз болады. Ендеше, бұл қасиет қосылыстарға тән емес, химиялық элемент уранға, оның атомдарына тең. Ураннан басқа химиялық элементтердің өздiгiнен сәуле шығаруға қабiлетiн байқауға талпынып көру сөзсiз едi. 1898 ж. Францияда Мария Склодовская-Кюри және басқа да ғалымдар торийдiң сәуле шығаратынын байқаған. Бұдан әрi жаңа элементтерi iздеуде негiзгi күш салған Мария Склодовская-Кюри мен оның ерi Пьер Кюри болды. Уран мен торийi бар рудаларды жуйелi түрде зерттеу, олардың iшiнен бұрын белгiсiз, Мария Склодовская-Кюридің отаны — Польшаның құрметiне полоний деп аталған, жаңа элементтi бөлiп алуға мүмкiндiк бердi. Ақырында өте қуатты сәуле шығаратын тағы бiр элемент ашылды. Ол радий (яғни сәулелi) деп аталды, Өздiгiнен сәуле шығару құбылысының өзiн ерлi-зайыпты Кюрилер радиоактiвтік деп атады. Радийдiң салыстырмалы атомның массасы 226-ға тең және Д.И. Менделеев кестесiндегi 88-нөмiрлi торкөзге орналасқан. Кюри ашқанға дейiн бұл торкөз бос болған. Өзiнiц химиялық қасиеттерi бойынша радий сілтiлiк жер элементтерiне жатады. Соңынан реттiк нөмiрi 83-тен жоғары химиялық элементтердiң бәрi де радиоактивтi болатындығы анықталды.
Назарларыңызға рахмет!!!
Орындаған:Жұмаш Жазира
Full transcript