Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Natural Selection Lab: Brine Shrimp

A study of the effect of varying environmental conditions, namely pH, on the hatch viability of brine shrimp and the discussion of differential reproductive success
by

Bedard

on 4 November 2013

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Natural Selection Lab: Brine Shrimp


and the effect of pH on hatch
viability of brine shrimp

Question:
Does pH affect the hatching viability of brine shrimp?
Experimental Design
Variables:
pH
salinity
heat
light
temperature
humidity
stirring
atmospheric pressure
adhesiveness of tape
Lab Procedure
1. Prepare 5 beakers of 1.5 % salinity.
2. Label 5 beakers and 5 petri dishes: 4, 5.5, 7, 8, and 9. Place a piece of 1.5 cm of tape on the bottom in each petri dish.
3. Use a paintbrush to collect 20 eggs and stick the eggs to the tape in each of the five petri dishes.
4. Calibrate pH meter with stock solutions.
5. Titrate the solutions in the beakers labeled "4" and "5.5" to the pH on their individual labels with a 0.5 molar solution of sulfuric acid solution.
6. Do not titrate the beaker labeled “7.”
7. Titrate the solutions in beaker "8" and "9" to the pH on their individual labels with a 0.2 molar solution of sodium hydroxide solution using a glass pipet.
8. Pour the solution in each beaker into its corresponding petri dish. Allow the dishes to sit at room temperature undisturbed for 24 hours.
Data Results
Hypothesis:
If the hatch viability of brine shrimp is affected by environmental conditions, such as pH, then the hatch viability will be greatest at a pH of 8 because this is close to the pH of their most favorable environment, brackish water.
Controlled Variables:
pH
salinity
Experimental Constants:
salinity of 1.5% in each petri dish
volume of solution
each dish (presumably) exposed to identical conditions
Experimental set up:





pH 4.18
(acid rain)
1.5% salt
pH 5.52
(rain water)
1.5% salt
pH 7.00
(control)
1.5% salt
pH 8.07
(brackish water)
1.5% salt
pH 9.05
(bell curve)
1.5% salt
Variables Observed in this Experiment
Independent Variable: pH
Dependent Variable: Hatch Viability
NATURAL SELECTION
Hatch Viability Calculation:
[(#Swim(24)+#Dead(24)+#Swim(48)+#Dead(48)]/(#Initial Eggs)

dish 1 (4.18): (0+0+4+3)/(20)=0.350 35.0%
dish 2 (5.52): (0+0+4+0)/(20)=0.200 20.0%
dish 3 (7.10): (0+0+8+0)/(20)=0.400 40.0%
dish 4 (8.07): (3+0+4+0)/(21)=0.333 33.3%
dish 5 (9.05): (1+0+4+1)/(20)=0.300 30.0%
Highest Viability (40%)
Interesting???!!!!
Lab Procedure
Lab Procedure
1. Using a stereomicroscope, count and remove the swimming brine shrimp with a pipet. Record this number under “24 hours.”
2. Count and remove the dead brine shrimp with a pipet. Record this number under “24 hours.”
3. Count the number of unhatched brine shrimp eggs and record this number under “24 hours.”
4. Repeat steps 1-3 for each of the petri dishes.
1. Using a stereomicroscope, count and remove the swimming brine shrimp with a pipet. Record this number under “48 hours.”
2. Count and remove the dead brine shrimp with a pipet. Record this number under “48 hours.”
3. Count the number of unhatched brine shrimp eggs and record this number under “48 hours.”
4. Repeat steps 1-3 for each of the petri dishes.
Safety
Equipment:
gloves
goggles
apron
Dangers:
Sulfuric acid (corrosive, irritant)
Avoid:
skin contact -> burns ( itching, scaling, reddening, blistering)
eye contact -> irritation (redness, watering, itching)
inhalation -> damage respiratory tract
ingestion
Sodium Hydroxide
Avoid:
inhalation -> cough, sore throat, burning sensation, shortness of breath
skin contact -> burns (red, blisters)
eye contact -> burns (Redness, blurred vision)
ingestion -> abdominal pain, burning mouth and throat, sensation in the throat and chest, nausea, vomiting
Sources
brineshrimpdirect.com
wildlife.utah.gov/gsl/brineshrimp
people.westminstercollege.edu
nj.gov/health
sciencelab.com
http://www.ncbi.nlm.nih.gov/pubmed/21535725
Materials
Day 1
Day 2
Day 3
brine shrimp eggs
5 pipets
glass pipet
paint brush
tweezers
2 stereomicroscopes
double sided tape
200 ml dechlorinated water
10 petri dishes
China marker
6 beakers
3 grams sodium chloride
bleach
goggles
gloves
apron
0.5 molar sulfuric acid
0.2 molar sodium hydroxide
graduated cylinder
pH probe
calibrated pH meter
pH stock solutions (pH of 3,4,5,8,9,10)
electronic balance
5 microscope slides
Analysis/Conclusion
Predicted a bell curve-relationship of pH and viability with 8 as the highest pH
pH of 7 had the highest hatch viability
4.18 unexpected as the second highest, possible explanation:
counted both the number of swimming and dead brine shrimp
pH of 4.18 had 3 dead
Time on microscope->heat and light
Our hypothesis implies that brine shrimp should remain in cyst form in unfavorable conditions (i.e. pH of 4)
Possible sources of error:
Small sample size
1 group-heavily influenced by random error
only about 20 brine shrimp eggs/pH
no repetition of lab
Temperature was not controlled
ideal temp: 80°F - 82°F
perhaps higher temperature for brine shrimp in pH of 4.18 (explains higher hatch viability)
Light was not controlled
less light = lower hatch rate
perhaps more light for the brine shrimp in pH of 4.18 (explains higher hatch viability)
pH meters were problematic
Adhesiveness of tape was variable in each solution
some eggs were observed floating on the surface in each petri dish, only submerged eggs will hatch
Questions:
Why does the pH of 4.18 have a higher hatch viability than the pH of 5.52?
pH of 4.18 represents acid rain - less favorable conditions expected to have lower hatch viability
pH of 5.52 represents rain water
more natural environment than acid rain
Did the sulfuric acid dissolve any of the brine shrimp?
acid may have corroded brine shrimp before counted – hatch viability may be lower than recorded
Are the eggs placed in the dishes from the same parents?
variability in hatch viability - are some naturally better in some environments?
How would pH affect overall maturing time/maximum length?
Let's dive deeper...
Dish 1
Dish 2
Dish 3
Dish 4
Dish 5
A presentation by Gabe, Gabby, and Sarah
Experimental Control group: pH of 7.00 +/- 0.2
Hypothesis was incorrect
Highest to lowest hatch viability:
1. pH of 7.10 (40.0%)
2. pH of 4.18 (35.0%) <-- not ideal environment
3. pH of 8.07 (33.3%) <-- predicted as highest
4. pH of 9.05 (30.0%)
5. pH of 5.52 (20.0%)
...but why???
Microscope or weather increased heat and light exposure unevenly between dishes
Analysis/Conclusion cont.
Crux of Natural Selection: Differential Reproductive Success
offspring that hatch in one environment pass their more adept genes on to the next gen. in population
Diff. Rep. Succ. shows how populations can change based on the genes that pass down from generation to generation
Significant variables not controlled:
Heat (higher temps yields higher viability)
Light (necessary for hatching)
No major methodology problems
Changes for next time:
Try using tweezers - paintbrushes are sloppy
Define hatch viability as a group beforehand
Stickier tape - adhesiveness affects hatching
Smaller dish size
Microscope / Weather -introduced variables
Practical Implications
Further proof for natural selection
Used to test ecotoxicity in agriculture
Test for warfare agents in liquid food
Ballast water testing irradication
9.05
9.05
Full transcript