Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

LEY DE STOKES

No description
by

marco torres

on 28 September 2012

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of LEY DE STOKES

LEY DE STOKES La Ley de Stokes se refiere a la fuerza de fricción experimentada por objetos esféricos moviéndose en el seno de un fluido viscoso en un régimen laminar de bajos números de Reynolds. Fue derivada en 1851 por George Gabriel Stokes. En geral la ley de Stokes es válida en el movimiento de partículas esféricas pequeñas moviéndose a velocidades bajas. ¿Que es un fluido? ¿Que es viscosidad? La ley de Stokes es el principio usado en los viscosímetros de bola en caída libre, en los cuales el fluido está estacionario en un tubo vertical de vidrio y una esfera, de tamaño y densidad conocidas, desciende a través del liquido. Si la bola ha sido seleccionada correctamente alcanzará la velocidad terminal, la cual puede ser medida por el tiempo que pasa entre dos marcas de un tubo. A veces se usan sensores electrónicos para fluidos opacos.

Conociendo las densidades de la esfera, el líquido y la velocidad de caída se puede calcular la viscosidad a partir de la fórmula de la ley de Stokes. Para mejorar la precisión del experimento se utilizan varias bolas. La técnica es usada en la industria para verificar la viscosidad de los productos, en caso como la glicerina La ley de Stokes también es importante para la compresión del movimiento de microorganismos en un fluido, así como los procesos de sedimentación debido a la gravedad de pequeñas partículas y organismos en medios acuáticos. También es usado para determinar el porcentaje de granulometría muy fina de un suelo mediante el ensayo de sedimentación. Algunas aplicaciones son las siguientes:
Diseño de sedimentadores (de manera ideal)
Diseño de desaladoras de petróleo crudo (para quitarle el agua con sal que tiene emulsionada)
En estudio de aerosoles.
En muchos tipos de caracterización de materiales como catalizadores sólidos, polímeros, etc.

Sin embargo, la utilidad de esta ley es muy limitada, ya que sólo se puede aplicar a números de Reynolds (con respecto al diámetro de la esfera) inferiores o aproximadamente de 0,1. En la atmósfera, la misma teoría puede ser usada para explicar porque las gotas de agua (o los cristales de hielo) pueden permanecer suspendidos en el aire (como nubes) hasta que consiguen un tamaño crítico para empezar a caer como lluvia (o granizo o nieve). Usos similares de la ecuación pueden ser usados para estudiar el principio de asentamiento de partículas finas en agua u otros fluidos. La ley de Stokes puede escribirse como: donde R es el radio de la esfera, v su velocidad y η la viscosidad del fluido. fluido se le denomina a cualquier conjunto de sustancias donde existe entre sus moléculas poca fuerza de atracción, cambiando su forma, lo que ocasiona que la posición que toman sus moléculas varía, ante una fuerza aplicada sobre ellos, pues justamente fluyen.

Los líquidos toman la forma del recipiente que los aloja, manteniendo su propio volumen, mientras que los gases carecen tanto de volumen como de forma propios. Las moléculas no cohesionadas se deslizan en los líquidos, y se mueven con libertad en los gases. Los fluidos están conformados por los líquidos y los gases, siendo los segundos mucho menos viscosos (casi fluidos ideales). Esta es una propiedad de los fluidos la cual se define como la oposición de un fluido a las deformaciones tangenciales. Un fluido que no tiene viscosidad se llama fluido ideal. En realidad todos los fluidos conocidos presentan algo de viscosidad, siendo el modelo de viscosidad nula una aproximación bastante buena para ciertas aplicaciones. http://es.easycalculation.com/physics/fluid-mechanics/stokes-law.php Calculadora en linea de ley de Strokes Si las partículas están cayendo verticalmente en un fluido viscoso debido a su propio peso puede calcularse su velocidad de caída o sedimentación igualando la fuerza de fricción con el peso aparente de la partícula en el fluido.
Full transcript