Loading presentation...

Present Remotely

Send the link below via email or IM


Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.


Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Copy of Precipitation Hardening

No description

Akshay Naik

on 3 April 2014

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Copy of Precipitation Hardening

Precipitation Hardening
What is it?
Governing Equations
Precicipitation hardening of Alloys
1. Solution Treatment:Heated upto 982 ̊C to 1066 ̊C.
Supersaturated solid solution.
2. Quenching: Cooled using air, water or oil.
Faster the cooling rate the finer the grain size and better the mechanical properties.
3. Aging:alloying elements form small precipitate clusters. Metal resists deformation and becomes harder

Precipitation hardening, also called Age hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminum, magnesium, nickel, titanium and some stainless steels.
Natural Aging
Artificial Aging
Factors affecting aging process
Process starts by heating the metal to a very high temperature in order to dissolve the precipitate. It takes anywherew from 1 hr to 20 hrs for the precipitate to dissolve. The new mixture then becomes supersaturated and is ready to be treated further.
Supersaturation of the solution is achieved through quenching. Quenching can be completed in water, air, or some mixture of a air and water. As an important step in solid solution strengthening, it leaves the material softer and more prepared for the next phase of precipitation hardening.
Artificial aging occurs by heating the solution to above room temperature and then allowing it to soak for 2 to 20 hours.
Aging temperature and soaking time depends on required strength of the final product.
Too high of a temperature and too much soaking leads to less precipitates which decreases strength & increases ductility.
Natural aging occurs at room temperature and it takes a relatively long period of time (from several days to several weeks).
Steel alloys
Precipitation hardening stainless steels are used in aerospace, defence and offshore oil & gas industries.
For missile components, motor shafts, valve stems, gears and other mechanical components.
Aluminium Alloys
They are used for making parts of pressure vessel or a turbocharger.
Silicon is used to manufacture semiconductor materials
Copper is used for a variety of purposes for ship building to roofing.
1. Temperature
2. Cold work on a'
3. Alloy composition
4. Impurities and Homogeneity
The 2 main characteristics are high strength and high corrosion resistance.

There are two equations to describe the two mechanisms for precipitation hardening:
Dislocations cutting through particles:
T= ∏ (y) r/ b l
This governing equation shows that the strength is proportional to the radius of the precipitate particles.

Dislocations bowing around particle
T= Gb / (L – 2r)
where  T is the material strength
G is the shear modulus
b is the magnitude of the Burgers vector
L is the distance between pinning points
r is the second phase particle radius

They are characterized into one of 3 groups based on final microstructure after HT: martensitic, semi-austenitic & austenitic.
Aluminium Alloys
The solubility of CuAl2 in aluminum increased with increasing temperature which is the hardening constituent.
The strongest aluminum alloys are produced by age hardening.
Brief History
A German engineer, Alfred Wilm began a study to replace the heavy brass alloy with an aluminum alloy for weight savings.
Wilm was the first person to combine both alloying and heat treating in his research thus calling it age hardening.
Paul Merica, Howard Scott and R.G. Waltenberg found that there existed this method of hardening metals, and that Wilm’s alloy was just a single example of this universal behavior.
Throttle Bodies
Full transcript