Loading presentation...

Present Remotely

Send the link below via email or IM


Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.


Napolean’s Theorem

Haoqi Jin

haoqi Jin

on 27 March 2013

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Napolean’s Theorem

Haoqi Jin Napoleon's Theorem Napoleon's Theorem in the Real World. If we construct equilateral triangles on the sides of any triangle, the centers of those equilateral triangles themselves form an equilateral triangle. Napoleon Bonaparte (1769 to 1821) history An accomplished mathematician
Made frequent contributions to the Ladies’ Diary
His motive for requesting a proof of the theorem is unclear William Rutherford The Ladies’ Diary http://nrich.maths.org/1944 Theorem attributed to him
Emperor of France
Talent for mathematics Controversy: Did Napoleon discover the theorem? Scholars trace origins of the theorem to 1825, which was after his death
Numerous articles cast doubt on whether Napoleon discovered it Historical Record 1825 article in Ladies’ Diary by William Rutherford
First reference to theorem as Napoleon’s theorem was in 1911 English scholarly journal
Published annually in London(1704-1841)
Also known as Woman’s Almanack
Scientific queries and calendar information proof Notice that if we rotate the figure counter-clockwise through an angle of 2p/3 about the point "c", the triangle originally centered at "b" moves to the position originally occupied by the triangle centered at "d". Thus the line segments cb and cd are of equal length and make an angle of 2p/3. Likewise if we rotate the figure clockwise through an angle 2p/3 about the point "a", the triangle centered at "b" again moves to the position of the triangle at "d", so the line segments ab and ad are of equal length and make an angle of 2p/3. Consequently the line ac bisects the angles at "a" and "c", so the triangle abc has an angle of p/3 at each vertex, so it is equilateral (as is acd). Relates to Heron's Formula for the area of a triangle in terms of edge lengths. Also relates Van Aubel's Theorem. Napoleon's Theorem
Full transcript