Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Medidas de dispersión para datos agrupados.

Presentación
by

Yael Horta

on 12 November 2012

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Medidas de dispersión para datos agrupados.

MEDIDAS DE DISPERSIÓN PARA DATOS AGRUPADOS. HORTA PEREZ YAEL ISAAC
CHAVEZ URIEL 1- PLANTEAMIENTO TÉORICO-CONCEPTUAL: LA DISPERSIÓN Respuesta: la varianza de las cuentas por cobrar es igual B/.721.645 La dispersión es importante porque:

Proporciona información adicional que permite juzgar la confiabilidad de la medida de tendencia central. Si los datos se encuentran ampliamente dispersos, la posición central es menos representativa de los datos.
Ya que existen problemas característicos para datos ampliamente dispersos, debemos ser capaces de distinguir que presentan esa dispersión antes de abordar esos problemas.
Quizá se desee comparar las dispersiones de diferentes muestras. Si no se desea tener una amplia dispersión de valores con respecto al centro de distribución o esto presenta riesgos inaceptables, necesitamos tener habilidad de reconocerlo y evitar escoger distribuciones que tengan las dispersiones más grandes.

Pero si hay dispersión en la mayoría de los datos, y debemos estar en capacidad de describirla. Ya que la dispersión ocurre frecuentemente y su grado de variabilidad es importante, ¿cómo medimos la variabilidad de una distribución empírica?. Vamos a considerar sólo algunas medidas de dispersión absolutas: el rango, la varianza, la desviación estándar y el coeficiente de variación. En el caso de las variables con valores que pueden definirse en términos de alguna escala de medida de igual intervalo, puede usarse un tipo de indicador que permite apreciar el grado de dispersión o variabilidad existente en el grupo de variantes en estudio.

A estos indicadores les llamamos medidas de dispersión, por cuanto que están referidos a la variabilidad que exhiben los valores de las observaciones, ya que si no hubiere variabilidad o dispersión en los datos interés, entonces no habría necesidad de la gran mayoría de las medidas de la estadística descriptiva. 1.1.- EL RANGO O RECORRIDO ( R ):

Es la medida de variabilidad más fácil de calcular. Para datos finitos o sin agrupar, el rango se define como la diferencia entre el valor más alto (Xn ó Xmax.) y el mas bajo (X1 ó Xmin) en un conjunto de datos.

Rango para datos no agrupados;

R = Xmáx.-Xmín = Xn-X1

Ejemplo:

Se tienen las edades de cinco estudiantes universitarios de Ier año, a saber: 18,23, 27,34 y 25., para calcular la media aritmética (promedio de las edades, se tiene que:

R = Xn-X1 ) = 34-18 = 16 años

Con datos agrupados no se saben los valores máximos y mínimos. Si no hay intervalos de clases abiertos podemos aproximar el rango mediante el uso de los límites de clases. Se aproxima el rango tomando el limite superior de la última clase menos el limite inferior de la primera clase.

Rango para datos agrupados;

R= (lim. Sup. de la clase n – lim. Inf. De la clase 1)

El rango de la distribución de frecuencias se calcula así:

R= (lim. Sup. de la clase n – lim. Inf. De la clase 1)

= (93.910 – 7.420) = 86.49

Full transcript