Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Técnicas de conteo

No description
by

María Juliana Osma Serrano

on 16 August 2013

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Técnicas de conteo

Técnicas de conteo
Juliana Osma S.

Qué es
El principio fundamental en el proceso de contar ofrece un método general para contar el numero de posibles arreglos de objetos dentro de un solo conjunto o entre varios conjuntos. Las técnicas de conteo son aquellas que son usadas para enumerar eventos difíciles de cuantificar.

Para qué sirven
Las técnicas de conteo son aquellas que son usadas para enumerar eventos difíciles de cuantificar. 2 Las técnicas de conteo son aquello principios que se usan para contar resultados que no se conocen o que son muy extensos.
Cuales son:
Principio multiplicativo
Si se desea realizar una actividad que consta de r pasos, en donde el primer paso de la actividad a realizar puede ser llevado a cabo de N1 maneras o formas, el segundo paso de N2 maneras o formas y el r-ésimo paso de Nr maneras o formas, entonces esta actividad puede ser llevada a efecto de;


N1 x N2 x ..........x Nr maneras o formas

El principio multiplicativo implica que cada uno de los pasos de la actividad deben ser llevados a efecto, uno tras otro.

Ejemplos:
1) Una persona desea construir su casa, para lo cuál considera que puede construir los cimientos de su casa de cualquiera de dos maneras (concreto o block de cemento), mientras que las paredes las puede hacer de adobe, adobón o ladrillo, el techo puede ser de concreto o lámina galvanizada y por último los acabados los puede realizar de una sola manera ¿cuántas maneras tiene esta persona de construir su casa?

Solución:

Considerando que r = 4 pasos

N1= maneras de hacer cimientos = 2
N2= maneras de construir paredes = 3
N3= maneras de hacer techos = 2
N4= maneras de hacer acabados = 1

N1 x N2 x N3 x N4 = 2 x 3 x 2 x 1 = 12 maneras de construir la casa
Permutaciones
Para entender lo que son las permutaciones es necesario definir lo que es una combinación y lo que es una permutación para establecer su diferencia y de esta manera entender claramente cuando es posible utilizar una combinación y cuando utilizar una permutación al momento de querer cuantificar los elementos de algún evento.


COMBINACIÓN Y PERMUTACION.

COMBINACIÓN:
Es todo arreglo de elementos en donde no nos interesa el lugar o posición que ocupa cada uno de los elementos que constituyen dicho arreglo.

PERMUTACIÓN:
Es todo arreglo de elementos en donde nos interesa el lugar o posición que ocupa cada uno de los elementos que constituyen dicho arreglo.

Para ver de una manera objetiva la diferencia entre una combinación y una permutación, plantearemos cierta situación.

Suponga que un salón de clase está constituido por 35 alumnos. a) El maestro desea que tres de los alumnos lo ayuden en actividades tales como mantener el aula limpia o entregar material a los alumnos cuando así sea necesario.

b) El maestro desea que se nombre a los representantes del salón (Presidente, Secretario y Tesorero).

Solución:
a) Suponga que por unanimidad se ha elegido a Daniel, Arturo y a Rafael para limpiar el aula o entregar material, (aunque pudieron haberse seleccionado a Rafael, Daniel y a Enrique, o pudo haberse formado cualquier grupo de tres personas para realizar las actividades mencionadas anteriormente).
¿Es importante el orden como se selecciona a los elementos que forma el grupo de tres personas?
Reflexionando al respecto nos damos cuenta de que el orden en este caso no tiene importancia, ya que lo único que nos interesaría es el contenido de cada grupo, dicho de otra forma, ¿quiénes están en el grupo? Por tanto, este ejemplo es una combinación, quiere decir esto que las combinaciones nos permiten formar grupos o muestras de elementos en donde lo único que nos interesa es el contenido de los mismos.

b) Suponga que se han nombrado como representantes del salón a Daniel como Presidente, a Arturo como secretario y a Rafael como tesorero, pero resulta que a alguien se le ocurre hacer algunos cambios, los que se muestran a continuación:

CAMBIOS
PRESIDENTE:
Daniel
Arturo
Rafael
Daniel
SECRETARIO:
Arturo
Daniel
Daniel
Rafael
TESORERO:
Rafael
Rafael
Arturo
Arturo

Ahora tenemos cuatro arreglos, ¿se trata de la misma representación?

Creo que la respuesta sería no, ya que el cambio de función que se hace a los integrantes de la representación original hace que definitivamente cada una de las representaciones trabaje de manera diferente, ¿importa el orden de los elementos en los arreglos?. La respuesta definitivamente sería sí, luego entonces las representaciones antes definidas son diferentes ya que el orden o la forma en que se asignan las funciones sí importa, por lo tanto es este caso estamos tratando con permutaciones.
Principio aditivo
Si se desea llevar a efecto una actividad, la cuál tiene formas alternativas para ser realizada, donde la primera de esas alternativas puede ser realizada de M maneras o formas, la segunda alternativa puede realizarse de N maneras o formas ..... y la última de las alternativas puede ser realizada de W maneras o formas, entonces esa actividad puede ser llevada a cabo de,

M + N + .........+ W maneras o formas

Ejemplos:
1) Una persona desea comprar una lavadora de ropa, para lo cuál ha pensado que puede seleccionar de entre las marcas Whirpool, Easy y General Electric, cuando acude a hacer la compra se encuentra que la lavadora de la marca W se presenta en dos tipos de carga ( 8 u 11 kilogramos), en cuatro colores diferentes y puede ser automática o semiautomática, mientras que la lavadora de la marca E, se presenta en tres tipos de carga (8, 11 o 15 kilogramos), en dos colores diferentes y puede ser automática o semiautomática y la lavadora de la marca GE, se presenta en solo un tipo de carga, que es de 11 kilogramos, dos colores diferentes y solo hay semiautomática. ¿Cuántas maneras tiene esta persona de comprar una lavadora?


Solución:

M = Número de maneras de seleccionar una lavadora Whirpool
N = Número de maneras de seleccionar una lavadora de la marca Easy
W = Número de maneras de seleccionar una lavadora de la marca General Electric


M = 2 x 4 x 2 = 16 maneras

N = 3 x 2 x 2 = 12 maneras

W = 1 x 2 x 1 = 2 maneras

M + N + W = 16 + 12 + 2 = 30 maneras de seleccionar una lavadora

Permutaciones con repetición
En los casos anteriores se han obtenido permutaciones en donde todos los elementos utilizados para hacer los arreglos son diferentes. A continuación se obtendrá una fórmula que nos permite obtener las permutaciones de n objetos, cuando entre esos objetos hay algunos que son iguales.

Ejemplo:
Obtenga todas las permutaciones posibles a obtener con las letras de la palabra OSO.
Solución:

Para obtener la fórmula, es necesario primero suponer que todas las letras de la palabra OSO son diferentes y para diferenciarlas pondremos subíndices a las letras O, por lo que quedaría, O1SO2, y las permutaciones a obtener serían:

3P3 = 3! = 6

definiendo las permutaciones tenemos que estas serían,

O1SO2, O2SO1, SO1O2, SO2O1, O1O2S, O2O1S

¿Pero realmente podemos hacer diferentes a las letras O?, eso no es posible, luego entonces ¿cuántos arreglos reales se tienen?

Como:
Arreglos reales
O1SO2 = O2SO1 ® OSO
SO1O2 = SO2O1 ® SOO
O1O2S= O2O1S ® OOS


Entonces se observa que en realidad sólo es posible obtener tres permutaciones con las letras de la palabra OSO debido a que las letras O son idénticas, ¿pero qué es lo que nos hizo pensar en seis arreglos en lugar de tres?, el cambio que hicimos entre las letras O cuando las consideramos diferentes, cuando en realidad son iguales.
Pruebas Ordenadas


Se le llama prueba ordenada al hecho de seleccionar r objetos de entre n objetos contenidos en una urna uno tras otro. Una prueba ordenada puede ser llevada a efecto de dos maneras:

1) Con sustitución (con reemplazo).- En este caso se procede a seleccionar el primer objeto de entre los n que hay, se observa de qué tipo es y se procede a regresarlo a la urna, luego se selecciona el siguiente objeto, lo anterior se repite hasta que se han extraído los r objetos de la prueba, por tanto el número de pruebas ordenadas de con sustitución se obtiene:


Número total de pruebas ordenadas con sustitución = n x n x n x .........x n = nr

Hay n maneras de seleccionar el primer objeto, luego al seleccionar el segundo objeto, dado que se ha regresado a la urna el primer objeto, también se tendrán n objetos y así sucesivamente.

2) Sin sustitución (sin reemplazo).- En este caso se procede a seleccionar el primer objeto, el cual no es regresado a la urna, luego se selecciona el segundo objeto, lo anterior se repite hasta completar los r objetos de la prueba, por lo que el número total de pruebas ordenadas sin sustitución se obtiene:


Número total de pruebas ordenadas sin sustitución = n(n-1)(n-2).........(n-r +1) = nPr

Hay n maneras de seleccionar el primer objeto, luego al seleccionar el segundo objeto, hay n –1 maneras, dado que el primer objeto no se regresa a la urna, luego cuando se extrae el r-ésimo objeto, hay (n –r +1) de que sea seleccionado.

Ejemplos:

1) ¿Cuántas maneras hay de que se asignen tres premios de un sorteo en donde el primer premio es una departamento, el segundo premio es un auto y el tercer premio es un centro de cómputo, si los participantes en este sorteo son 120 personas, a.sí la asignación se puede hacer con sustitución, b.sí la asignación se puede hacer sin sustitución.

Solución:

a. Por principio multiplicativo:

120 x 120 x 120 = 1,728,000 maneras de asignar los premios

Por fórmula: n =120, r = 120

nr = 1203 = 1,728,000 maneras de asignar los tres premios

Hay que considerar que en este caso, al regresar cada boleto que es extraído de la urna, las personas que participan en el sorteo tienen la posibilidad de no ganar uno solo de los premios, de ganar un premio, dos de los premios o los tres premios. Cosa que generalmente no ocurre.

Combinaciones
Como ya se mencionó anteriormente, una combinación, es un arreglo de elementos en donde no nos interesa el lugar o posición que ocupan los mismos dentro del arreglo. En una combinación nos interesa formar grupos y el contenido de los mismos.

La fórmula para determinar el número de combinaciones es:



nCr = Combinaciones de r objetos tomados de entre n objetos

Donde se observa que,


La expresión anterior nos explica como las combinaciones de r objetos tomados de entre n objetos pueden ser obtenidas a partir de las permutaciones de r objetos tomados de entre n objetos, esto se debe a que como en las combinaciones no nos importa el orden de los objetos, entonces si tenemos las permutaciones de esos objetos al dividirlas entre r!, les estamos quitando el orden y por tanto transformándolas en combinaciones, de otra forma, también si deseamos calcular permutaciones y tenemos las combinaciones, simplemente con multiplicar estas por el r! obtendremos las permutaciones requeridas.


nPr = nCr r!

Y si deseamos r = n entonces;

nCn = n! / (n –n)!n! = n! / 0!n! = 1

¿Qué nos indica lo anterior?
Que cuando se desea formar grupos con la misma cantidad de elementos con que se cuenta solo es posible formar un grupo.

Ejemplos:
1) a. Si se cuenta con 14 alumnos que desean colaborar en una campaña pro limpieza del Tec, cuantos grupos de limpieza podrán formarse si se desea que consten de 5 alumnos cada uno de ellos, b.si entre los 14 alumnos hay 8 mujeres, ¿cuantos de los grupos de limpieza tendrán a 3 mujeres?, c.¿cuántos de los grupos de limpieza contarán con 4 hombres por lo menos?

Solución:
a. n = 14, r = 5

14C5 = 14! / (14 – 5 )!5! = 14! / 9!5!
= 14 x 13 x 12 x 11 x 10 x 9!/ 9!5!
= 2002 grupos

Entre los 2002 grupos de limpieza hay grupos que contienen solo hombres, grupos que contienen solo mujeres y grupos mixtos, con hombres y mujeres.

b. n = 14 (8 mujeres y 6 hombres), r = 5

En este caso nos interesan aquellos grupos que contengan 3 mujeres y 2 hombres

8C3*6C2 = (8! / (8 –3)!3!)*(6! / (6 – 2)!2!)
= (8! / 5!3!)*(6! / 4!2!)
= 8 x7 x 6 x 5 /2!
= 840 grupos con 3 mujeres y 2 hombres, puesto que cada grupo debe constar de 5 personas


c. En este caso nos interesan grupos en donde haya 4 hombres o más

Los grupos de interés son = grupos con 4 hombres + grupos con 5 hombres
= 6C4*8C1 + 6C5*8C0 = 15 x 8 + 6 x 1 = 120 + 6 = 126
PARTICIONES ORDENADAS.
Se le llama partición ordenada al hecho de repartir n objetos en células de una cantidad de x1 objetos, x2 objetos,......y xk objetos.

Para deducir la fórmula de particiones ordenadas partiremos de un ejemplo.
¿Cuántas maneras hay de repartir 10 libros diferentes entre tres alumnos, si al primero le daremos 2, al segundo 3 y el resto al tercer alumno?
Ejemplos de esta partición serían las siguientes si se numeran los libros del 1 al 10;
Solución:
Lo primero que debemos hacer es seleccionar 2 libros de los 10 que se tienen para el primer alumno, esto es;

10C2 = 10! / (10 – 2)!2! = 10! / 8!2! = 45 maneras de seleccionar los libros

Luego se seleccionan 3 libros de los 8 que quedan para el segundo alumno;

8C3 = 8! / (8 – 3)!3! = 8! / 5!3! = 56 maneras

Y por último se procederá a seleccionar cinco libros de los cinco que quedan para el tercer alumno, lo que se muestra a continuación;

5C5 = 5! / (5 –5)!5! = 5! / 0!5! = 1 manera

Por tanto el número total de particiones ordenadas en células de 2, 3 y 5 elementos se determina:

10C2*8C3*5C5 = (10! / (10 – 2)!2!)*(8! / (8 – 3)!3!)*(5! / (5 – 5)!5!) = 10! /2!3!5!

La expresión anterior nos recuerda a la fórmula utilizada para encontrar las permutaciones de n objetos, entre los cuales hay algunos objetos que son iguales, por lo que usaremos la misma fórmula para encontrar las particiones ordenadas.

Por tanto la fórmula para las particiones ordenadas sería:



Esta fórmula sólo puede ser utilizada cuando se reparten todos los objetos, no parte de ellos, en ese caso se usarán combinaciones.

Donde:

nPx1,x2,.....,xk = Total de particiones ordenadas o reparticiones que es posible hacer cuando los n objetos son repartidos en grupos de x1 objetos, x2 objetos ...... y xk objetos.

n = x1 + x2 + ......+ xk

Ejemplos:

1) ¿Cuántas maneras hay de repartir 9 juguetes entre tres niños, si se desea que al primer niño le toquen 4 juguetes, al segundo 2 y al tercero 3 juguetes?

Solución:

Por combinaciones,

9C4*5C2*3C3 = 126*10*1= 1260 maneras de repartir los juguetes

Por fórmula,
n = 9
x1 = 4
x2 = 2
x3 =3

9P4,2,3 = 9! / 4!2!3! = 1,260 maneras de repartir los juguetes

DIAGRAMA DEL ÁRBOL

Un diagrama de árbol es una representación gráfica de un experimento que consta de r pasos, donde cada uno de los pasos tiene un número finito de maneras de ser llevado a cabo.

Ejemplos:
1.Un médico general clasifica a sus pacientes de acuerdo a: su sexo (masculino o femenino), tipo de sangre (A, B, AB u O) y en cuanto a la presión sanguínea (Normal, Alta o Baja). Mediante un diagrama de árbol diga en cuantas clasificaciones pueden
estar los pacientes de este médico?

N
Solución: A
A B
N
B A
B
M AB N
A
O B


A
N
F B A
B
AB
B
O A

B
Si contamos todas las ramas terminales, nos damos cuenta que el número de clasificaciones son 2 x 4 x 3 = 24 mismas que podemos enumerar;
MAN, MAA, MAB, MBN, MBA, MBB, etc, etc.

PROBLEMAS PROPUESTOS

1. Si una prueba se compone de 12 preguntas de verdadero-falso, a. ¿de cuantas maneras diferentes un estudiante puede dar una respuesta para cada pregunta?, b. Sí de antemano el maestro le dice que la primera pregunta es verdadera, ¿cuántas maneras tiene de contestar esta prueba?. a. r=4,096 maneras b. r=2,048 maneras

Gracias
webgrafía
http://probabilidadestadistic.blogspot.com/2010/09/tecnicas-de-conteo.html
http://www.buenastareas.com/ensayos/Tecnicas-De-Conteo/2396892.html
http://www.itch.edu.mx/academic/industrial/sabaticorita/amarillo.htm
Full transcript