Loading presentation...

Present Remotely

Send the link below via email or IM


Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.


Chain Rule

No description

Mauli Saini

on 20 September 2016

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Chain Rule

The Chain Rule
Why do we use the chain rule?
The chain rule is an effective and easier way of finding the derivative of complex equations.

The chain rule: it is a useful tool!
How to use the Chain Rule
In using the chain rule, you need to work from the outside to the inside. First, differentiate the outer function and then multiply by the derivative of the inner function(s).
BE CAREFUL! It can get messy, so pay attention to detail, don't rush through the math, and don't get cocky (we speak from experience)!
By: Mauli Saini, Hannah Thornton, & Josh Ramnath
How do I know when to use the chain rule?
ANYTIME you see a function "nested" inside of another function, think to use the chain rule.
Aside from saving you a lot of time and calculations, it also lets you differentiate functions that may seem impossible to derive.
For example, if we try to multiply out f(x) = (3x^2 + 4x - 5)^2 and then differentiate it. Slightly manageable, right? Now, imagine if we try to multiply out f(x) = (3x^2 + 4x - 5)^5. That would not be worth the time, but with the chain rule it becomes very easy!
The Chain Rule in Action:

= f'(
) *


f(x) =

3x^2 + 4x - 5

f'(x) =

3x^2 + 4x - 5
) *

(6x + 4)
Animation time!

Differentiate: f(x)=(3x+1026)^2

f '(x)= 2 (3x+1026)(3)

f '(x)= 6 (3x+1026)
And now you know the chain rule!
f(x) = x^3[2x-1]^2

f '(x)= 3x^2[2x-1]^2 + x^3 (2) (2x-1)^1 (2)

f '(x)= 3x^2[2x-1]^2+ 4 x^3 (2x-1)^1
y= [sin(5x)]

y'= 5[cos(5x)]
Example #2
Example #3
Example #4
The derivative of sine
The derivative of (5x)
Just bring down the function given in parenthesis
Clean it up!
The derivative of (3x+1026)
The function in parenthesis
Take the 2 from the exponent and subtract that by 1.
Clean it up
Full transcript