Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Geometria en la Escultura

No description
by

Mario Lopz

on 31 March 2014

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Geometria en la Escultura

Geometría
La geometría nos enseña a ubicarnos en el espacio,
a explicarnos formas, volúmenes y en definitiva
a dotarnos de un potente instrumento
para adquirir una buena concepción espacial
La escultura es una imagen tridimensional que tiene
alto
ancho
profundidad

En el espacio urbano las esculturas son realizadas por el hombre con materiales que provienen de elementos naturales encontrados en la naturaleza, que son modificados y procesados para su utilización.
Para desenvolverse en el medio artístico es necesario conocer y saber manejar todos los elementos y componentes geométricos de las formas que han sido y son utilizadas por artistas y diseñadores para crear sus obras.
En las creaciones artísticas o de diseño el componente matemático es un factor más que aparece
junto con la luz, el color, o el volumen.
en
la
escultura
Matemática del espacio.
La enseñanza de la Geometría puede ser caracterizada como el estudio de las experiencias espaciales.
Ciencia que tiene por objeto
analizar
organizar
sistematizar
conocimientos espaciales.

Medir y calcular sobre los cuerpos físicos que nos rodean es una tarea imprescindible.
Algunos artistas llegan a las matemáticas, y en concreto a las superficies geométricas, de una forma intuitiva como parte de la búsqueda del concepto de espacio.

Otros, en cambio, ya perciben desde el principio la importancia de trabajar desde las matemáticas, desde la geometría.
La importancia de la geometría radica precisamente en su utilidad para el estudio y manejo de las formas, tanto en las que aparecen en la naturaleza, como las de creación humana.
Escultura matemática
Apareció hasta el siglo XX.
EE.UU., Japón, Canadá y Australia, son los lugares en los que más se ha desarrollado.
Escultura geométrica
Es el grupo más amplio de la clasificación dada la gran relación entre las artes plásticas y la escultura.
Son todas ellas obras, en las que se han empleado casi todos los tipos de sólidos: cubos, esferas, conos, cilindros o poliedros más complejos.
Se subdivide a su vez en poliédrica, superficies matemáticas curvas y otras superficies.


Escultura con conceptos algebraicos
Son las que incluyen algún concepto algebraico como simetrías, transformaciones y esculturas modulares o esculturas con operaciones booleanas.
Conocido como SEBASTIÁN
Es un escultor nacido en Chihuahua (México) en 1947 al que le apasionan las matemáticas.
Enrique Carbajal González
Es un ejemplo de escultor matemático. Emplea con frecuencia en sus obras los sólidos matemáticos más sencillos como el cubo, el cilindro, el cono, la esfera, prismas más complejos, etc.

Desde la década de los sesenta, ha explorado el volumen y el espacio a través de los cinco cuerpos regulares platónicos: el tetraedro, el hexaedro, el octaedro, el dodecaedro y el icosaedro.
Eduardo Chillida
Elogio del Horizonte en Gijón.
Jorge Oteiza
Homenaje al caserío vasco.
La Geometría abunda en la naturaleza y se manifiesta a distintos niveles.
Las formas esféricas se dan en gran variedad de organismos unicelulares flotantes en el agua, como los huevos de los peces.
La forma cilíndrica se encuentra fundamental-mente en el reino vegetal: troncos de árboles, tallos de plantas, etc.
La espuma formada por pompas de jabón en contacto unas con otras, forma, en sección, hexágonos, excepto en la capa exterior que por estar en contacto con el aire, curva su superficie.
El esquema hexagonal se da con mucha frecuencia en panales de las abejas, cristales de nieve, y en flores como la lila y el tulipán.
Full transcript